Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The stimulation of protein and DNA by electromagnetic fields (EMF) has been problematic because the fields do not appear to have sufficient energy to directly affect such large molecules. Studies with electric and magnetic fields in the extremely low-frequency range have shown that weak fields can cause charge movement. It has also been known for some time that redistribution of charges in large molecules can trigger conformational changes that are driven by large hydration energies. This review considers examples of direct effects of electric and magnetic fields on charge transfer, and structural changes driven by such changes. Conformational changes that arise from alterations in charge distribution play a key role in membrane transport proteins, including ion channels, and probably account for DNA stimulation to initiate protein synthesis. It appears likely that weak EMF can control and amplify biological processes through their effects on charge distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15368370701878820 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!