Transgenic mice with a lambda shuttle vector containing a lacI target gene were generated for use as a short-term, in vivo mutagenesis assay. The gene is recovered from the treated mice by exposing mouse genomic DNA to in vitro packaging extracts and plating the rescued phage on agar plates containing 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside (X-Gal). Phage with mutations in the lacI gene form blue plaques, whereas phage with a nonmutated lacI form colorless plaques. Spontaneous background mutant rates using this system range from 0.6 x 10(-5) to 1.7 x 10(-5), depending upon tissue analyzed, with germ cells exhibiting less than one-third the background rate of somatic tissue. Treatment of the mice with N-ethyl-N-nitrosourea (EtNU), benzo[a]pyrene (B[a]P), or cyclophosphamide caused an induction of mutations over background. Recovery of the lacI target for sequence analysis was performed by genetic excision of a plasmid from the phage using partial filamentous phage origins. The predominant mutations identified from untreated and treated populations were base substitutions. Although it has been shown by others that 70% of all spontaneous mutations within the lacI gene, when replicated in Escherichia coli, occur at a hot spot located at bases 620-632, only 1 of 21 spontaneous mutations has been identified in this region in the transgenic mouse system. In addition, 5 of 9 spontaneous transitions analyzed occur at CpG dinucleotides, whereas no transition mutations were identified at the prokaryotic deamination hot spots occurring at dcm sites (CCA/TGG) within the lacI gene. For EtNU, approximately equal amounts of transitions and transversions were observed, contrasting with B[a]P-induced mutations, in which only transversions were obtained. In addition, B[a]P mutagenesis showed a predominance of mutations (81%) involving cytosines and/or guanines, consistent with its known mode of action. The discovery of a spontaneous mutation spectrum different from that of bacterial assays, coupled with the concordance of EtNU and B[a]P base mutations with the known mechanisms of activity for these mutagens, suggests that this transgenic system will be useful as a short-term, in vivo system for mutagen assessment and analysis of mechanisms leading to mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC52424PMC
http://dx.doi.org/10.1073/pnas.88.18.7958DOI Listing

Publication Analysis

Top Keywords

laci gene
16
mutations laci
12
mutations identified
12
mutations
11
transgenic mice
8
laci target
8
short-term vivo
8
spontaneous mutations
8
laci
7
gene
6

Similar Publications

Anti-correlation of LacI association and dissociation rates observed in living cells.

Nat Commun

January 2025

Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.

The rate at which transcription factors (TFs) bind their cognate sites has long been assumed to be limited by diffusion, and thus independent of binding site sequence. Here, we systematically test this assumption using cell-to-cell variability in gene expression as a window into the in vivo association and dissociation kinetics of the model transcription factor LacI. Using a stochastic model of the relationship between gene expression variability and binding kinetics, we performed single-cell gene expression measurements to infer association and dissociation rates for a set of 35 different LacI binding sites.

View Article and Find Full Text PDF

Genetically Encoded Biosensors for Constrained Biological Functions in Probiotic Nissle.

ACS Synth Biol

January 2025

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China.

The probiotic Nissle (EcN) is an exceptional strain that has attracted significant attention not only for its clinical efficacy in the treatment and prevention of gastrointestinal disorders but also as a burgeoning microbial chassis for living therapeutic applications. However, there is an immediate necessity to develop conditional expression systems that confine the activity of EcN specifically in the gastrointestinal tract, to avoid influencing the environment. Here, we constructed two genetically encoded interchangeable sensors responsive to body temperature at 37 °C, and small molecules such as protocatechuic acid (PCA), a metabolite found in green tea.

View Article and Find Full Text PDF

Characterization and Transcriptional Regulation of the 2-Ketogluconate Utilization Operon in .

Microorganisms

December 2024

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.

JUIM01 is an industrial 2-keto-d-gluconate (2KGA)-producing strain. However, its regulation mechanism of 2KGA metabolism remains to be clarified. Among other reported species, the 2-ketogluconate utilization operon ( operon) plays key roles in 2KGA catabolism.

View Article and Find Full Text PDF

Unlocking Green Biomanufacturing Potential: Superior Heterologous Gene Expression with a T7 Integration Overexpression System in .

ACS Synth Biol

December 2024

Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.

Industrial biotechnology employs cells for producing valuable products and serving as biocatalysts sustainably, addressing resource, energy, and environmental issues. is a preferred host for creating microbial chassis cells and producing industrial enzymes and functional nutritional products. In this study, a dual-module T7 integration expression system in was established.

View Article and Find Full Text PDF

De novo 2'-fucosyllactose biosynthesis using glucose as the sole carbon source by multiple engineered Bacillus subtilis.

Metab Eng

December 2024

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China. Electronic address:

2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide and plays significant roles in gut microbiome balance, neural development, and immunoregulation. However, current fermentation schemes using multiple carbon sources increase production cost and metabolism burden. This study reported the development of an engineered Bacillus subtilis strain that produces 2'-FL using glucose as the sole carbon source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!