Characterization of previously described intraflagellar transport (IFT) mouse mutants has led to the proposition that normal primary cilia are required for mammalian cells to respond to the sonic hedgehog (SHH) signal. Here we describe an N-ethyl-N-nitrosourea-induced mutant mouse, alien (aln), which has abnormal primary cilia and shows overactivation of the SHH pathway. The aln locus encodes a novel protein, THM1 (tetratricopeptide repeat-containing hedgehog modulator-1), which localizes to cilia. aln-mutant cilia have bulb-like structures at their tips in which IFT proteins (such as IFT88) are sequestered, characteristic of Chlamydomonas reinhardtii and Caenorhabditis elegans retrograde IFT mutants. RNA-interference knockdown of Ttc21b (which we call Thm1 and which encodes THM1) in mouse inner medullary collecting duct cells expressing an IFT88-enhanced yellow fluorescent protein fusion recapitulated the aln-mutant cilial phenotype, and live imaging of these cells revealed impaired retrograde IFT. In contrast to previously described IFT mutants, Smoothened and full-length glioblastoma (GLI) proteins localize to aln-mutant cilia. We hypothesize that the aln retrograde IFT defect causes sequestration of IFT proteins in aln-mutant cilia and leads to the overactivated SHH signaling phenotype. Specifically, the aln mutation uncouples the roles of anterograde and retrograde transport in SHH signaling, suggesting that anterograde IFT is required for GLI activation and that retrograde IFT modulates this event.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817720 | PMC |
http://dx.doi.org/10.1038/ng.105 | DOI Listing |
Nat Rev Mol Cell Biol
November 2024
Human Technopole, Milan, Italy.
Biol Open
September 2024
Neuroscience Program, Lafayette College, Easton, PA 18042, USA.
Cell
August 2024
Human Technopole, Milan 20157, Italy. Electronic address:
Bidirectional transport in cilia is carried out by polymers of the IFTA and IFTB protein complexes, called anterograde and retrograde intraflagellar transport (IFT) trains. Anterograde trains deliver cargoes from the cell to the cilium tip, then convert into retrograde trains for cargo export. We set out to understand how the IFT complexes can perform these two directly opposing roles before and after conversion.
View Article and Find Full Text PDFJ Cell Sci
July 2024
MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium.
View Article and Find Full Text PDFEur J Hum Genet
November 2024
Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
INPP5E encodes inositol polyphosphate-5-phosphatase E, an enzyme involved in regulating the phosphatidylinositol (PIP) makeup of the primary cilium membrane. Pathogenic variants in INPP5E hence cause a variety of ciliopathies: genetic disorders caused by dysfunctional cilia. While the majority of these disorders are syndromic, such as the neuronal ciliopathy Joubert syndrome, in some cases patients will present with an isolated phenotype-most commonly non-syndromic retinitis pigmentosa (RP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!