Isoforms of ankyrin (ankyrinsR) immunologically related to erythrocyte ankyrin (ankyrinRo) are associated with distinct neuronal plasma membrane domains of functional importance, such as cell bodies and dendrites, axonal hillock and initial segments, and nodes of Ranvier. AnkyrinRo is expressed in brain, and accounts for at least one of the ankyrinR isoforms. Another ankyrin isoform of brain, ankyrinB, is encoded by a distinct gene and is immunologically distinct from ankyrinsR. Mutant mice with normoblastosis (nb/nb) constitute the first described genetic model of ankyrin deficiency: they display a severe hemolytic anemia due to a significantly reduced expression of the ankyrinRo gene in reticulocytes as well as brain (Peters L. L., C. S. Birkenmeier, R. T. Bronson, R. A. White, S. E. Lux, E. Otto, V. Bennett, A. Higgins, and J. E. Barker. 1991. J. Cell Biol. 114:1233-1241). In the present report, we distinguish between ankyrinRo and other ankyrinR isoforms using immunoblot analysis and immunofluorescence localization of ankyrinsR throughout the nervous system (forebrain, cerebellum, brain stem, spinal cord, and sciatic nerve) of nb/nb and normal mice. This is the first immunocytochemical characterization of the neurological component of the nb mutation and shows the following. (a) The isoform of ankyrin at the nodes of Ranvier and initial axonal segments is present in the nb/nb mice and does not cross-react with an ankyrinRo-specific antibody; this isoform, therefore, is distinct from both ankyrin isoforms identified in brain, ankyrinRo and ankyrinB, and is probably the product of a distinct gene and a unique component of the specialized membrane skeleton associated with nodes of Ranvier. (b) AnkyrinRo missing from nb/nb mice is selectively associated with neuronal cell bodies and dendrites, excluded from myelinated axons, and displays a selective pattern of expression in the nervous system whereby expression is almost ubiquitous in neurons of the cerebellum (Purkinje and granule cells) and spinal cord, and restricted to a very minor subset of neurons in hippocampus and neocortex of forebrain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289136 | PMC |
http://dx.doi.org/10.1083/jcb.114.6.1243 | DOI Listing |
Sci Rep
January 2025
Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84321-5600, USA.
Zika virus (ZIKV) causes a variety of peripheral and central nervous system complications leading to neurological symptoms such as limb weakness. We used a mouse model to identify candidate genes potentially involved in causation or recovery from ZIKV-induced acute flaccid paralysis. Using Zikv and Chat chromogenic and fluorescence in situ RNA hybridization, electron microscopy, immunohistochemistry, and ZIKV RT-qPCR, we determined that some paralyzed mice had infected motor neurons, but motor neurons are not reduced in number and the infection was not present in all paralyzed mice; hence infection of motor neurons were not strongly correlated with paralysis.
View Article and Find Full Text PDFVision Res
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT).
View Article and Find Full Text PDFRes Sq
December 2024
Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
Pathogenic variants of cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor.
View Article and Find Full Text PDFMatrix Biol
January 2025
German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:
The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.
View Article and Find Full Text PDFJ Affect Disord
December 2024
Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, USA.
Experimental studies of major depressive disorder (MDD) and stress reveal connectivity disturbances of the prefrontal cortex (PFC) that may involve molecular and morphological changes in myelin and the axons it enwraps. These alterations may also affect the nodes of Ranvier (NR), myelin-bare axon stretches along myelin sheaths necessary for action potential propagation, as well as the paranodes, specialized regions of the myelin sheath flanking NRs. Thus, we investigated whether paranode length and the labeling of paranode marker CASPR in PFC white matter (WM) differed in MDD subjects and chronic stress-exposed rats, as compared to their respective controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!