Ca(2+) is essential for physiological depolarization-evoked synchronous neurotransmitter release. But, whether Ca(2+) influx or another factor controls release initiation is still under debate. The time course of ACh release is controlled by a presynaptic inhibitory G protein-coupled autoreceptor (GPCR), whose agonist-binding affinity is voltage-sensitive. However, the relevance of this property for release control is not known. To resolve this question, we used pertussis toxin (PTX), which uncouples GPCR from its G(i/o) and in turn reduces the affinity of GPCR toward its agonist. We show that PTX enhances ACh and glutamate release (in mice and crayfish, respectively) and, most importantly, alters the time course of release without affecting Ca(2+) currents. These effects are not mediated by G(beta)gamma because its microinjection into the presynaptic terminal did not alter the time course of release. Also, PTX reduces the association of the GPCR with the exocytotic machinery, and this association is restored by the addition of agonist. We offer the following mechanism for control of initiation and termination of physiological depolarization-evoked transmitter release. At rest, release is under tonic block achieved by the transmitter-bound high-affinity presynaptic GPCR interacting with the exocytotic machinery. Upon depolarization, the GPCR uncouples from its G protein and consequently shifts to a low-affinity state toward the transmitter. The transmitter dissociates, the unbound GPCR detaches from the exocytotic machinery, and the tonic block is alleviated. The free machinery, together with Ca(2+) that had already entered, initiates release. Release terminates when the reverse occurs upon repolarization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2393753 | PMC |
http://dx.doi.org/10.1073/pnas.0708540105 | DOI Listing |
Neurochem Int
June 2024
Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, 19122, USA. Electronic address:
Corticoptropin releasing factor (CRF) is implicated in stress-related physiological and behavioral changes. The septohippocampal pathway regulates hippocampal-dependent mnemonic processes, which are affected in stress-related disorders, and given the abundance of CRF receptors in the medial septum (MS), this pathway is influenced by CRF. Moreover, there are sex differences in the MS sensitivity to CRF and its impact on hippocampal function.
View Article and Find Full Text PDFNat Commun
December 2022
Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA.
Ca influx through high-voltage-activated calcium channels (HVACCs) controls diverse cellular functions. A critical feature enabling a singular signal, Ca influx, to mediate disparate functions is diversity of HVACC pore-forming α and auxiliary Caβ-Caβ subunits. Selective Caα blockers have enabled deciphering their unique physiological roles.
View Article and Find Full Text PDFNPJ Parkinsons Dis
June 2022
Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
α-Synuclein (α-syn) is a key molecule linked to Parkinson's disease pathology. Physiologically, the monomeric α-syn in the presynaptic termini is involved in regulation of neurotransmission, but the pathophysiology of extracellular monomeric α-syn is still unknown. Utilizing both in vivo and in vitro approaches, we investigated how extracellular α-syn impact presynaptic structure and function.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2020
Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany.
transdifferentiation of patient-derived mesenchymal stem/stromal cells (MSCs) into neurons is of special interest for treatment of neurodegenerative diseases. Although there are encouraging studies, little is known about physiological modulations during this transdifferentiation process. Here, we focus on the analysis of gap junction dependent cell-cell communication and the expression pattern of gap junction-building connexins during small molecule-induced neuronal transdifferentiation of human bone marrow-derived MSCs.
View Article and Find Full Text PDFPhysiol Rep
August 2019
Department of Biomedicine, University of Bergen, Bergen, Norway.
Exocytotic release of neurotransmitter can be quantified by electrophysiological recording from postsynaptic neurons. Alternatively, fusion of synaptic vesicles with the cell membrane can be measured as increased capacitance by recording directly from a presynaptic neuron. The "Sine + DC" technique is based on recording from an unbranched cell, represented by an electrically equivalent RC-circuit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!