Obestatin: its physicochemical characteristics and physiological functions.

Peptides

Laboratory of Animal Physiology and Biochemistry, College of Animal Science, South China Agriculture University, Wushan Avenue, Tianhe District, Guangzhou 510642, China.

Published: April 2008

Obestatin, a novel 23 amino acid amidated peptide encoded by the same gene with ghrelin, was initially reported to reduce food intake, body weight gain, gastric emptying and suppress intestinal motility through an interaction with the orphan receptor GPR39. However, recently reports have shown that above findings had been questioned by several groups. Further studies explained that obestatin was involved in inhibiting thirst and anxiety, improving memory, regulating sleep, affecting cell proliferation, and increasing the secretion of pancreatic juice enzymes. We also identified that obestatin could stimulate piglet liver and adipose cell proliferation, and inhibit the secretion of IGF-I. According to the controversy over the effects and the cognate ligand of obestatin, here we provide the latest review on the structure, distribution and physiological functions of obestatin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2008.01.012DOI Listing

Publication Analysis

Top Keywords

physiological functions
8
functions obestatin
8
cell proliferation
8
obestatin
6
obestatin physicochemical
4
physicochemical characteristics
4
characteristics physiological
4
obestatin novel
4
novel amino
4
amino acid
4

Similar Publications

Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.

Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.

View Article and Find Full Text PDF

Tissue clearing combined with high-resolution confocal imaging is a cutting-edge approach for dissecting the three-dimensional (3D) architecture of tissues and deciphering cellular spatial interactions under physiological and pathological conditions. Deciphering the spatial interaction of leptin receptor-expressing (LepR) stromal cells with other compartments in the bone marrow is crucial for a deeper understanding of the stem cell niche and the skeletal tissue. In this study, we introduce an optimized protocol for the 3D analysis of skeletal tissues, enabling the visualization of hematopoietic and stromal cells, especially LepR stromal cells, within optically cleared bone hemisections.

View Article and Find Full Text PDF

Background: Deformed wing virus (DWV) is a major honey bee pathogen that is actively transmitted by the parasitic mite Varroa destructor and plays a primary role in Apis mellifera winter colony losses. Despite intense investigation on this pollinator, which has a unique environmental and economic importance, the mechanisms underlying the molecular interactions between DWV and honey bees are still poorly understood. Here, we report on a group of honey bee proteins, identified by mass spectrometry, that specifically co-immunoprecipitate with DWV virus particles.

View Article and Find Full Text PDF

Background: The oxygen reactivity index (ORx) reflects the correlation between focal brain tissue oxygen (pbtO) and the cerebral perfusion pressure (CPP). Previous, small cohort studies were conflicting on whether ORx conveys cerebral autoregulatory information and if it is related to outcome in traumatic brain injury (TBI). Thus, we aimed to investigate these issues in a larger TBI cohort.

View Article and Find Full Text PDF

Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.

Cell Commun Signal

January 2025

Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.

Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!