Complete nerve transection (neurotmesis) of the rat sciatic nerve is a well-established animal model. The most frequently used behavioural for evaluation of neurotmesis-induced deficits is the walking track analysis with calculation of the sciatic functional index (SFI). More recently, the static sciatic index (SSI) has been developed, which shows a good correlation with the SFI. However, despite all advantages (high accessibility, easy handling, high accuracy, cost-effectiveness), the SSI is still not widely used. We, therefore, developed a novel programme ("Visual-SSI"), which will be made freely available for the assessment of the SSI. As gold-standard for the treatment of neurotmesis-induced nerve gaps, autologous nerve transplantation studies in the rat sciatic nerve model (n=16 [6 weeks], n=8 [12 weeks]) were carried out to test the effectiveness and feasibility of the Visual-SSI software. We observed a significant recovery starting from the pre-operative condition over the 3rd, 6th, 9th weeks until the 12th week after surgery (p<0.05). Theoretically, the SSI can be calculated from both rearing and normal standing position of the rats and we investigated whether the SSI is affected differentially by these positions. We observed no significant differences between animals in a rearing and normal standing stance (p>0.05). The present method combines efficiency (simplicity of use, rapid and economical setup) with accurate and precise quantification of the functional regeneration in the sciatic nerve lesion model of the rat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2008.01.006 | DOI Listing |
PLoS One
January 2025
Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America.
Objective: Animal models of nerve injury are important for studying nerve injury and repair, particularly for interventions that cannot be studied in humans. However, the vast majority of gait analysis in animals has been limited to univariate analysis even though gait data is highly multi-dimensional. As a result, little is known about how various spatiotemporal components of the gait relate to each other in the context of peripheral nerve injury and trauma.
View Article and Find Full Text PDFJ Hand Surg Asian Pac Vol
January 2025
Department of Orthopaedic Surgery, Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Decellularised nerve transplantation has limited therapeutic efficacy for peripheral nerve injuries. In this study, we tested the hypothesis that nerve regeneration can be promoted by increasing blood circulation to the decellularised nerve through the surrounding blood-flow environment. We transplanted 20 mm decellularised nerves into sciatic nerve defects in Sprague-Dawley rats (female, 12 weeks old).
View Article and Find Full Text PDFPharmaceutics
December 2024
Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan.
Background: Morphine analgesic tolerance (MAT) limits the clinical application of morphine in the management of chronic pain. IIK7 is a melatonin type 2 (MT2) receptor agonist known to have antioxidant properties. Oxidative stress is recognized as a critical factor in MAT.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Metabolic dysfunction has been demonstrated to contribute to diabetic pain, pointing towards a potential correlation between glucose metabolism and pain. To investigate the relationship between altered glucose metabolism and neuropathic pain, we compared samples from healthy subjects with those from intervertebral disc degeneration (IVDD) patients, utilizing data from two public datasets. This led to the identification of 412 differentially expressed genes (DEG), of which 234 were upregulated and 178 were downregulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!