The effect of blending two silk proteins, regenerated Bombyx mori fibroin and synthetic spidroin containing RGD, on silk film material structure (beta-sheet content) and properties (solubility), as well as on biological response (osteoblast adhesion, proliferation and differentiation) was investigated. Although the elasticity and strength of silks make them attractive candidates for bone, ligament, and cartilage tissue engineering applications, silk proteins generally lack bioactive peptides for enhancing cell functions. Thus, a synthetic spider silk, spidroin, containing two RGD cell adhesive sequences (RGD-spidroin) was engineered. RGD-spidroin was blended with different ratios of fibroin and spun coat into films on glass coverslips. beta-Sheet formation, contact angle, surface topography and RGD surface presentation were characterized and correlated with cell behavior. We found that the amount of beta-sheet formation was directly related to the RGD-spidroin content of the blends after annealing, with the pure RGD-spidroin demonstrating the highest amount of beta-sheet content. The increased beta-sheet content improved film stability under culture conditions. A new visualization technique demonstrated that the RGD presentation on the film surface was affected by both the RGD-spidroin content and annealing conditions. It was determined that 10mass% RGD-spidroin was necessary to improve film stability and to achieve osteoblast attachment and differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2008.02.007DOI Listing

Publication Analysis

Top Keywords

beta-sheet content
12
silk proteins
8
spidroin rgd
8
beta-sheet formation
8
amount beta-sheet
8
rgd-spidroin content
8
film stability
8
rgd-spidroin
6
silk
5
beta-sheet
5

Similar Publications

Hydrodynamic cavitation induced fabrication of soy protein isolate-polyphenol complexes: Structural and functional properties.

Curr Res Food Sci

January 2025

School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.

The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).

View Article and Find Full Text PDF

This study explores for the first time the impact of a 6-day germination process on the structure (FTIR), antioxidant activity, nutritional/safety attributes (ACE-I inhibitory activity, digestibility, and cytotoxicity), and functional properties of fractions of variable molecular weight (W > 5 kDa; 3 kDa < MW < 5 kDa; and MW < 3 kDa) isolated from proteins extracted from lentils. FTIR results indicated a substantial increase in β-sheet contents during germination. The digestibility of proteins increased from day 0 (16.

View Article and Find Full Text PDF

This study examined the effects of varying microwave treatment durations (0-120 s) on the structural and functional properties of glycosylated soybean 7S protein. The results indicated that microwaving for 60 s significantly altered the structure of 7S, resulting in a more ordered protein configuration. The treated protein exhibited the largest particle size (152.

View Article and Find Full Text PDF

Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.

View Article and Find Full Text PDF

The Effect of CaCl on the Gelling Properties of Pea Protein-Pectin Dispersions.

Gels

December 2024

Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, USA.

The effects of CaCl addition before (PreCa) or after (PostCa) heating pea protein-pectin dispersions on the formed gel's rheological and microstructural properties were investigated. Isothermal titration calorimetry (ITC) revealed that CaCl bound both pea proteins and pectins through a spontaneous exothermic reaction and pectin exhibited a stronger binding affinity to CaCl. In PreCa gels, low levels of CaCl (5 and 10 mM) increased the gel elasticity (increase in the storage modulus, G') and their microstructural compactness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!