Increasing research interest in the new and unusual properties of nanotechnology-related pharmaceuticals and medical devices has led to international and national reviews of safety regulation. Significant considerations emerging here are the relative paucity of metrological and toxicological data, as well as the absence of adequate funding and standardized approaches for its acquisition. Some areas are better researched, such as the toxicity of carbon nanotubes and use of engineered nanoparticle titanium and zinc oxides as broad-spectrum ultraviolet-blocking agents. Such in vitro studies do reveal concerns--for example, related to oxidative stress and granuloma formation--but their uncertain clinical ramifications may require more integration in preclinical drug discovery of research characterizing structure-toxicity relationships and limiting safety liabilities. Regulatory considerations for medically related nanoproducts should also involve improving cost-effectiveness systems and ensuring that industry involvement in standard-setting does not become a means of reducing competition. It is also important that nanotechnology policy and regulation encourages new models of safe drug discovery and development that are more systematically targeted at the global burden of disease.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14740338.7.2.103DOI Listing

Publication Analysis

Top Keywords

drug discovery
8
toxicological public
4
public good
4
good considerations
4
considerations regulation
4
regulation nanomaterial-containing
4
nanomaterial-containing medical
4
medical products
4
products increasing
4
increasing interest
4

Similar Publications

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

Transformation of Distinct Superatoms to Superalkalis by Successive Ligation of Thymine Nucleobases.

J Phys Chem A

January 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China.

The ligation strategy has been widely used in the chemical synthesis of atomically precise clusters. A series of thymine (T)-ligated Al-T ( = Be, Al, C; = 1-5) complexes have been studied to reveal the effect of DNA nucleobase ligands on the electronic structures of different superatoms in the present work. In addition to its protective role, the successive attachment of thymine ligands significantly lowers the adiabatic ionization energies (AIEs) of the studied Al superatoms with filled and unfilled electronic shells.

View Article and Find Full Text PDF

Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy.

NPJ Biofilms Microbiomes

January 2025

Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.

Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period.

View Article and Find Full Text PDF

Oxidative stress represents a pivotal mechanism in the pathogenesis of numerous chronic diseases. The Kelch-like ECH-associated protein 1-transcription factor NF-E2 p45-related factor 2 (KEAP1-NRF2) pathway plays a crucial role in maintaining redox homeostasis and regulating a multitude of biological processes such as inflammation, protein homeostasis, and metabolic homeostasis. In this paper, we present the findings of recent studies on the KEAP1-NRF2 pathway, which have revealed that it is aberrantly regulated and induces oxidative stress injury in a variety of diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, respiratory diseases, digestive diseases, and cancer.

View Article and Find Full Text PDF

Formamidopyrimidine DNA glycosylase (Fpg) and flap endonuclease 1 (FEN1) are essential to sustaining genomic stability and integrity, while the abnormal activities of Fpg and FEN1 may lead to various diseases and cancers. The development of simple methods for simultaneously monitoring Fpg and FEN1 is highly desirable. Herein, we construct a multiple cyclic ligation-promoted exponential recombinase polymerase amplification (RPA) platform for sensitive and simultaneous monitoring of Fpg and FEN1 in cells and clinical tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!