In this study we describe the synthesis and characterization of nanocation exchanger particles (NCEX) as the functional filling material for magnetic beads. Polystyrene NCEX particles were synthesized from styrene via a mini-emulsion polymerization. The coupling of cation exchanger groups was done with chlorosulfuric acid after the polymerization reaction. The NCEX particles have an average diameter of 160-260 nm. Their ion exchange capacity amounts up to 4.58 mval/g. In an adsorption experiment it was possible to adsorb 192 mg lysozyme/g NCEX. Depending on the equilibrium concentration of lysozyme in the bulk solution 70-85% of the attached protein was desorbed. NCEX particles were used to produce magnetic beads with cation exchanger properties. Therefore an innovative production process for the synthesis of magnetic beads from different single components was used. The produced magnetic beads contained 40 wt % NCEX material and showed an ion exchanger capacity of 2 mequiv/g. It was possible to adsorb 75 mg lysozyme/g magnetic beads with a maximum recovery rate of 95%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bp070291gDOI Listing

Publication Analysis

Top Keywords

magnetic beads
24
ncex particles
12
nanocation exchanger
8
exchanger particles
8
filling material
8
cation exchanger
8
magnetic
6
beads
6
ncex
6
exchanger
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!