A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Albumin is the main nucleophilic target of human plasma: a protective role against pro-atherogenic electrophilic reactive carbonyl species? | LitMetric

The aim of this work was to study the metabolic fate of 4-hydroxy- trans-2-nonenal (HNE) in human plasma, which represents the main vascular site of reactive carbonyl species (RCS) formation and where the main pro-atherogenic target proteins are formed. When HNE was spiked in human plasma, it rapidly disappeared (within 40 s) and no phase I metabolites were detected, suggesting that the main fate of HNE is due to an adduction mechanism. HNE consumption was then monitored in two plasma fractions: low molecular weight plasma protein fractions (<10 kDa; LMWF) and high molecular weight plasma protein fractions (>10 kDa; HMWF). HNE was almost stable in LMWF, while in HMWF it was consumed by almost 70% within 5 min. Proteomics identified albumin (HSA) as the main protein target, as further confirmed by a significantly reduced HNE quenching of dealbuminated plasma. LC-ESI-MS/MS analysis identified Cys34 and Lys199 as the most reactive adduction sites of HSA, through the formation of a Michael and Schiff base adducts, respectively. The rate constant of HNE trapping by albumin was 50.61 +/- 1.89 M (-1) s (-1) and that of Cys34 (29.37 M (-1) s (-1)) was 1 order of magnitude higher with respect to that of GSH (3.81 +/- 0.17 M (-1) s (-1)), as explained by molecular modeling studies. In conclusion, we suggest that albumin, through nucleophilic residues, and in particular Cys34, can act as an endogenous detoxifying agent of circulating RCS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx700349rDOI Listing

Publication Analysis

Top Keywords

human plasma
12
reactive carbonyl
8
hne
7
plasma
6
albumin
4
albumin main
4
main nucleophilic
4
nucleophilic target
4
target human
4
plasma protective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!