The gelation of a designed gelator was investigated by different NMR methods, which showed a clear thermal hysteresis. Two very simple approaches for the NMR determination of the gelation point are suggested. One involves the observation of the NMR integral, and the other records the ratio of the diffusion coefficients between the gelator and the solvent. Differential behavior of the gelator protons are interpreted as a hint that a part of the gelator molecule might still be flexible as in the dissolved state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.2211 | DOI Listing |
J Biomater Sci Polym Ed
January 2025
School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, India.
Ulcerative colitis, a chronic inflammatory condition of the colon, requires precise and targeted treatment, and polysaccharides, with their pH responsiveness and biodegradability, offer an innovative approach for colon-specific drug delivery. This study aims to develop a highly precise drug delivery system with enhanced therapeutic and targeting efficiency for ulcerative colitis, focusing on the preparation, optimisation, and evaluation of dual cross-linked mesalamine-loaded sericin-pectin (DSPs) micro-beads. These beads utilise the pH-responsive and microflora biodegradability properties of polysaccharides for targeted colon delivery, employing the Response Surface Methodology.
View Article and Find Full Text PDFEnviron Technol
January 2025
Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
The remediation of oil-contaminated soil poses significant environmental challenges, often necessitating innovative approaches for effective and sustainable solutions. This study focuses on the synthesis, characterisation, and application of biodegradable capsules loaded with surfactant for enhanced oil remediation of a clean sand. By controlling the release properties of capsules, the research aims to overcome the limitations of conventional surfactant-based remediation methods, such as rapid washout and reduced efficacy over time.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. Electronic address:
Chronic pain is a prevalent condition affecting a significant portion of the global population and is known to be associated with an increased risk of cardiovascular diseases. Despite the clinical relevance, the mechanisms underlying the link between chronic pain and myocardial ischemia-reperfusion (MI/R) injury remain poorly understood. This study aimed to investigate the role of the superior cervical ganglion (SCG) in mediating the effects of chronic pain on MI/R injury and to develop a novel therapeutic strategy.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:
Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:
Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!