In this article, a method to reveal the presence of Mg content inside the different parts of leaves of Hedera helix is presented. In fact a sample of a Hedera helix's leaf, commonly characterized by a green and a white side, is analyzed under X-ray radiation. The presence of two zones with different colors in the Hedera helix's leaf has not been explained. In this connection, there are presently three hypotheses to explain the characteristic double-color appearance of the leaf. The first hypothesis suggests a different cytoplasmic inheritance of chloroplasts at the cell division, the second a different allelic composition, homozygote and heterozygote, between the two zones, and finally the third the action of a virus which changes the color properties in the Hedera's leaves. The resulting effect is a different content of "something" between the green and the white side. We utilized X-ray radiation, obtained from a plasma source with a Mg target, to image Hedera helix leaves and we found that the green side of the leaf is highlighted. We may suppose that the reason why the X-rays from a Mg plasma source, allow us to pick up the green side is probably due to the greater presence of the amount of Mg (from chlorophyll or other complexes and/or salts) in the two sides, green and white, of the leaf.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.20574 | DOI Listing |
Plant Dis
December 2024
College of Landscape Architecture and Horticulture, Kunming, China;
Dodder (Cuscuta spp.), particularly the species Cuscuta chinensis, is a parasitic weed known for its ability to infest a broad spectrum of plant species, thereby significantly affecting the stability and functionality of native ecosystems (Zhang, Xu et al. 2021).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany.
RF-amide peptide receptors including the neuropeptide FF receptor 1 (NPFFR1) are G protein-coupled receptors (GPCRs) that modulate diverse physiological functions. High conservation of endogenous ligands and receptors makes the identification of selective ligands challenging. Previously identified antagonists mimic the C-terminus of peptide ligands and lack selectivity towards the closely related neuropeptide FF receptor 2 (NPFFR2) or the neuropeptide Y receptor (YR).
View Article and Find Full Text PDFJ Comp Eff Res
January 2025
Medical Oncology Department, Program in Solid Tumours, CIMA, Cancer Center Clínica Universidad de Navarra, Madrid, and Grupo Español de Investigación en Cancer ginecológicO (GEICO), Madrid, 28027, Spain.
J Immunother Cancer
November 2024
Universite Paris-Saclay, Gif-sur-Yvette, France
Introduction: Immune checkpoint blockers (ICBs) revolutionized the treatment of patients with advanced non-small cell lung cancer (NSCLC) but only a fraction of them obtain a response, and clinical benefit from these treatments is often difficult to predict. The aim of our study is to unveil the potential implications of antibody response to previous viral infections in predicting response to ICBs in patients with NSCLC.
Methods: Sera from patients treated with ICBs alone, chemotherapy (CT) or a combination of CT-ICBs were analyzed with VirScan (CDI Labs, USA), a high-throughput method that comprehensively analyzes epitope-level antiviral IgG antibodies via programmable phage display and immunoprecipitation sequencing.
Oncol Ther
November 2024
Department of Public Health, Federico II University of Naples, Naples, Italy.
Introduction: Personalized medicine has revolutionized the clinical management of patients with solid tumors. However, the large volumes of molecular data derived from next-generation sequencing (NGS) and the lack of harmonized bioinformatics pipelines drastically impact the clinical management of patients with solid tumors. A possible solution to streamline the molecular interpretation and reporting of NGS data would be to adopt automated data analysis software.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!