Power-scalable system of phase-locked single-mode diode lasers.

Appl Opt

Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Physik, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany.

Published: September 1999

The direct use of diode lasers for high-power applications in material processing is limited to applications with relatively low beam quality and power density requirements. To achieve high beam quality one must use single-mode diode lasers, however with the drawback of relatively low optical output powers from these components. To realize a high-power system while conserving the high beam quality of the individual emitters requires coherent coupling of the emitters. Such a power-scalable system consisting of 19 slave lasers that are injection locked by one master laser has been built and investigated, with low-power diode lasers used for system demonstration. The optical power of the 19 injection-locked lasers is coupled into polarization-maintaining single-mode fibers and geometrically superimposed by a lens array and a focusing lens. The phase of each emitter is controlled by a simple electronic phase-control loop. The coherence of each slave laser is stabilized by computer control of the laser current and guarantees a stable degree of coherence of the whole system of 0.7. An enhancement factor of 13.2 in peak power density compared with that which was achievable with the incoherent superposition of the diode lasers was observed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.38.005752DOI Listing

Publication Analysis

Top Keywords

diode lasers
20
beam quality
12
power-scalable system
8
single-mode diode
8
power density
8
high beam
8
lasers
7
diode
5
system phase-locked
4
phase-locked single-mode
4

Similar Publications

This study presents a novel optoporation technique using a titanium-coated TiO microstructure (TMS) device activated by an infrared diode laser for highly efficient intracellular delivery. The TMS device, fabricated with 120 nm titanium coating on a titanium dioxide (TiO) microstructure containing microneedles (height ∼2 μm and width ∼4.5 μm), demonstrates enhanced biocompatibility and thermal conductivity compared to the conventional TiO microstructure (MS).

View Article and Find Full Text PDF

The aim of this study was to compare the effectiveness of different types of low level laser treatment (LLLT) in reducing pain levels, changing oxygen saturation and bite force in patients with myofacial pain syndrome (MPS). 45 patients were randomly assigned to three groups: Group 1 (GRR laser, n = 15) received LLLT with Gallium-Aluminium-Arsenide (GaAlAs) diode laser with a wavelength of 904 nm and red laser with a wavelength of 650 nm over masseter muscle region. Group 2 (Nd: YAG laser, n = 15) were treated with Neodymium-doped Yttrium Aluminium Garnet laser with a wavelength of 1064 nm and the same protocol with Nd: YAG laser was performed in the Group 3 (placebo, n = 15) using sham device.

View Article and Find Full Text PDF

This in-vitro study assessed the influence of the shade of human teeth on the transmission of near-infrared light. A total of 40 teeth were used. After cleaning the root surface and removing cementum, the teeth were sectioned into slices 3 mm thick, with each comprising a portion of the crown (enamel-dentine (ED)) and of the root (dentine only).

View Article and Find Full Text PDF

Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.

View Article and Find Full Text PDF

Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!