A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules. | LitMetric

Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules.

Appl Opt

Institute for Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 1 Akademicheskii Avenue, 634055 Tomsk, Russia.

Published: July 1999

We propose to use a Fabry-Perot interferometer (FPI) as a comb frequency filter to isolate pure rotational Raman spectra (PRRS) of nitrogen molecules. In making the FPI's free spectral range equal to the spectral spacing between the lines of nitrogen PRRS, which are practically equidistant, one obtains a device with a comb transmission function with the same period. However, to match the FPI transmission comb completely with the comb of nitrogen PRRS lines one should tune the wavelength of the radiation used to excite the PRRS of nitrogen exactly to the position of any minimum in the FPI transmission comb. Thus to achieve this task for the case of nitrogen PRRS one must take the FPI's free spectral range Dnu(f)= 4B(N(2)) and the wavelength of the exciting radiation such that (1/lambda(exc)) = 4B(N(2))(k + 1/2), where B(N(2)) is the rotational constant of the nitrogen molecule and k is an arbitrary integer number. In this case all (odd and even) pure rotational Raman lines of nitrogen will pass through the FPI while the line of exciting radiation is being suppressed. Additionally, a FPI cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.38.004635DOI Listing

Publication Analysis

Top Keywords

pure rotational
12
rotational raman
12
nitrogen prrs
12
fabry-perot interferometer
8
isolate pure
8
raman spectra
8
prrs nitrogen
8
fpi's free
8
free spectral
8
spectral range
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!