AI Article Synopsis

Article Abstract

Accurate structural refinement of a putative acylphosphatase using 1.3 A X-ray diffraction data was carried out using charge densities determined by the maximum-entropy method (MEM). The MEM charge density clearly revealed detailed features of the solvent region of the putative acylphosphatase crystalline structure, some of which had never been observed in conventional Fourier maps. The structural model in the solvent region was constructed as distributions of anisotropic water atoms. The omit-difference MEM maps and the difference MEM maps were effective in revealing details of the protein structure, such as multiple conformations of the side chains of amino-acid residues, anisotropy of atoms and H atoms. By model building using the MEM charge densities, the reliability factors R1 and R free in the SHELX refinement were dramatically improved from 17.9% and 18.3% to 9.6% and 10.0%, respectively. The present results prove the usefulness of MEM in improving the accuracy of refinement of protein crystal structures.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0907444907065663DOI Listing

Publication Analysis

Top Keywords

putative acylphosphatase
12
refinement putative
8
acylphosphatase x-ray
8
x-ray diffraction
8
diffraction data
8
charge densities
8
mem charge
8
solvent region
8
mem maps
8
mem
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!