Earth's long-term sea-level history is characterized by widespread continental flooding in the Cretaceous period (approximately 145 to 65 million years ago), followed by gradual regression of inland seas. However, published estimates of the Late Cretaceous sea-level high differ by half an order of magnitude, from approximately 40 to approximately 250 meters above the present level. The low estimate is based on the stratigraphy of the New Jersey margin. By assimilating marine geophysical data into reconstructions of ancient ocean basins, we model a Late Cretaceous sea level that is 170 (85 to 270) meters higher than it is today. We use a mantle convection model to suggest that New Jersey subsided by 105 to 180 meters in the past 70 million years because of North America's westward passage over the subducted Farallon plate. This mechanism reconciles New Jersey margin-based sea-level estimates with ocean basin reconstructions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1151540 | DOI Listing |
Sci Data
January 2025
Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St. Peters Bay, Prince Edward Island, C0A 2A0, Canada.
Regional sea level rise has been regarded a key factor in understanding of climate change impact to coastal communities. As a vulnerable island to sea level rise and storm surges, the province of Prince Edward Island (PEI) in Canada lacks sufficient long-term island-wide historic record of sea level data. This has become a major challenge for further studies on coastal environments and climate change adaptation.
View Article and Find Full Text PDFSci Rep
December 2024
Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
The Northern Antarctic Peninsula (NAP) and the West Antarctic Ice Sheet (WAIS) are likely to respond rapidly to climate changes by increasing the collapse of peripheral ice shelves and the number of days above 0 °C. These facts make this region a representative hotspot of the global sea level rise and the location of one of the global climate tipping points (thresholds in the Earth system whose changes may become irreversible, if exceeded). Understanding the climate evolution of the NAP, based on past evidences, may help infer its future scenario.
View Article and Find Full Text PDFSci Total Environ
December 2024
Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. Electronic address:
In coastal urban areas highly susceptible to flooding, whether from sea level rise (SLR) or storms, it is crucial to assess the vulnerability and risks posed by extreme and frequent floods. Reliable estimates of extreme natural events' return periods rely on historical data or probabilistic models, requiring extensive and robust data. From climate-scenario-based or semi-empirical models, SLR projections are represented by a central estimate or the full domain cumulative density function (CDF), entailing uncertainties.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
December 2024
Department of Anesthesiology and the Center for Shock Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA.
Aircraft cabins are routinely pressurized to the equivalent of 8000 ft altitude. Exposure of lab animals to aeromedical evacuation relevant hypobaria after traumatic brain injury worsens neurological outcomes, which is paradoxically exacerbated by hyperoxia. This study tested the hypothesis that exposure of rats to hypobaria following cortical impact reduces cerebral blood flow, increases neuroinflammation, and alters brain neurochemistry.
View Article and Find Full Text PDFSci Total Environ
December 2024
University of Antwerp, ECOSPHERE, Wilrijk, 2610, Belgium.
Salt marshes are known as key ecosystems for nature-based climate mitigation through organic carbon sequestration into their sediment beds, but at the same time they are affected by accelerating sea level rise induced by climate warming. Consequently, an important question is how organic carbon accumulation rates (OCAR) of salt marshes will respond to future accelerating rates of relative sea level rise (RSLR). To date, existing insights are either based on (1) comparison of geographically distant marsh sites, differing in local RSLR rates but also in other environmental conditions that additionally can affect OCAR, or (2) experiments in given marsh sites, in which proxies for RSLR are manipulated, but run over periods of years instead of decades, the latter being the relevant time scale of marsh responses to RSLR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!