Type I IFN (IFN-I) signaling is detrimental to cells and mice infected with Listeria monocytogenes. In this study, we investigate the impact of IFN-I on the activity of listeriolysin O (LLO), a pore-forming toxin and virulence protein released by L. monocytogenes. Treatment of macrophages with IFN-beta increased the ability of sublytic LLO concentrations to cause transient permeability of the plasma membrane. At higher LLO concentrations, IFN-beta enhanced the complete breakdown of membrane integrity and cell death. This activity of IFN-beta required Stat1. Perturbation of the plasma membrane by LLO resulted in activation of the p38MAPK pathway. IFN-beta pretreatment enhanced LLO-mediated signaling through this pathway, consistent with its ability to increase membrane damage. p38MAPK activation in response to LLO was independent of TLR4, a putative LLO receptor, and inhibition of p38MAPK neither enhanced nor prevented LLO-induced death. IFN-beta caused cells to express increased amounts of caspase 1 and to produce a detectable caspase 1 cleavage product after LLO treatment. Contrasting recent reports with another pore-forming toxin, this pathway did not aid cell survival as caspase 1-deficient cells were equally sensitive to lysis by LLO. Key lipogenesis enzymes were suppressed in IFN-beta-treated cells, which may exacerbate the membrane damage caused by LLO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.180.6.4116 | DOI Listing |
BMC Biol
December 2024
Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China.
Background: The intracellular bacterium Listeria monocytogenes is an attractive vector for cancer immunotherapy as it can effectively deliver tumor antigens to antigen-presenting cells, leading to a robust antitumor response.
Results: In this study, we developed a novel vaccine platform called Listeria-based Live Attenuated Double Substitution (LADS), which involves introducing two amino acid substitutions (N478AV479A) into the virulence factor listeriolysin O (LLO). LADS is a safe vaccine platform, with an attenuation of nearly 7000-fold, while retaining complete immunogenicity due to the absence of deletion of any virulence factors.
ACS Appl Mater Interfaces
December 2024
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
Proc Natl Acad Sci U S A
December 2024
Institute of Advanced Battery Materials and Devices, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
Adv Mater
January 2025
Institute of Advanced Battery Materials and Devices, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.
Elemental doping is widely used to improve the performance of cathode materials in lithium-ion batteries. However, macroscopic/statistical investigation on how doping sites are distributed in the material lattice, despite being a key prerequisite for understanding and manipulating the doping effect, has not been effectively established. Herein, to solve this predicament, a universal strategy is proposed to quantitatively identify the locations of Al and Mg dopants in lithium-rich layered oxides (LLOs).
View Article and Find Full Text PDFMicrobiology (Reading)
November 2024
School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!