The NF-kappaB family member RelB has many properties not shared by other family members such as restricted subunit association and lack of regulation by the classical IkappaB proteins. We show that the protein level of RelB is significantly reduced in the absence of p100 and reduced even more when both p100 and p105 are absent. RelB stabilizes itself by directly interacting with p100, p105, and their processed products. However, RelB forms complexes with its partners using different interaction modes. Although the C-terminal ankyrin repeat domain of p105 is not involved in the RelB-p105 complex formation, all domains and flexible regions of each protein are engaged in the RelB-p100 complex. In several respects the RelB-p52 and RelB-p100 complexes are unique in the NF-kappaB family. The N-terminal domain of p100/p52 interacts with RelB but not RelA. The transcriptional activation domain of RelB, but not RelA, directly interacts with the processing region of p100. These unique protein-protein contacts explain why RelB prefers p52 as its dimeric partner for transcriptional activity and is retained in the cytoplasm as an inhibited complex by p100. This association-mediated stabilization of RelB implies a possible role for RelB in the processing of p100 into p52.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2431000PMC
http://dx.doi.org/10.1074/jbc.M707898200DOI Listing

Publication Analysis

Top Keywords

relb
9
stabilization relb
8
nf-kappab family
8
p100 p105
8
relb rela
8
p100
6
relb requires
4
requires multidomain
4
multidomain interactions
4
interactions p100/p52
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!