Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells.

J Biol Chem

Unité Propre de L'Enseignement Supérieure Lipides and Signalisation Cellulaire Equipe d'Accueil 4183, Dijon 21000, France.

Published: May 2008

We have recently demonstrated that the cells expressing CD36, localized apically on the taste buds of mouse lingual circumvallate papillae, act as gustatory cells. In the present study we isolated these CD36-positive cells from mouse circumvallate papillae and investigated intracellular signaling events, triggered by a long-chain polyunsaturated fatty acid, i.e. linoleic acid (LA). LA induced increases in free intracellular calcium concentrations, [Ca(2+)](i), by recruiting calcium from endoplasmic reticulum pool via inositol 1,4,5-triphosphate production followed by calcium influx via opening of store-operated calcium (SOC) channels. LA also induced phosphorylation of Src-protein-tyrosine kinases (Src-PTKs), particularly of Fyn(59) and Yes(62). LA-evoked phosphorylation of Fyn(59) and Yes(62) was implicated in the activation of SOC channels. Reverse transcription-quantitative PCR revealed that the CD36-positive gustatory cells possessed mRNA of enzymes like tryptophan hydroxylase-1, l-aromatic amino acid decarboxylase, tyrosine hydroxylase, and dopamine beta-hydroxylase, involved in the synthesis of monoamine neurotransmitters. Interestingly, the addition of LA to these cells induced the release of 5-hydroxytryptamine and noradrenalin to the extracellular environment. The LA-induced release of these neurotransmitters was curtailed by SOC channel blockers and Src-PTK inhibitors. These results altogether demonstrate that LA binds to mouse CD36-positive gustatory cells, induces Src-PTKs phosphorylation, triggers calcium signaling, and evokes the release of 5-hydroxytryptamine and noradrenalin, which in turn may be implicated in the downstream signaling to the afferent nerve fibers, thus transmitting the output signal from taste buds to the central nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M707478200DOI Listing

Publication Analysis

Top Keywords

gustatory cells
16
cd36-positive gustatory
12
linoleic acid
8
calcium signaling
8
mouse cd36-positive
8
taste buds
8
circumvallate papillae
8
soc channels
8
fyn59 yes62
8
release 5-hydroxytryptamine
8

Similar Publications

Structural comparisons of human and mouse fungiform taste buds.

Chem Senses

January 2025

Dept. Cell & Devel. Biology, Rocky Mountain Taste & Smell Center, Univ. Colorado School of Medicine, Aurora, CO.

Taste buds are commonly studied in rodent models, but some differences exist between mice and humans in terms of gustatory mechanisms and sensitivities. Whether these functional differences are reflected in structural differences between species is unclear. Using immunofluorescent image stacks, we compared morphological and molecular characteristics of mouse and human fungiform taste buds.

View Article and Find Full Text PDF

: The anterior cingulate cortex (ACC) is known for its involvement in various regulatory functions, including in the central control of feeding. Activation of local elements of the central glucose-monitoring (GM) neuronal network appears to be indispensable in these regulatory processes. Destruction of these type 2 glucose transporter protein (GLUT2)-equipped chemosensory cells results in multiple feeding-associated functional alterations.

View Article and Find Full Text PDF

Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds.

J Neurochem

January 2025

Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing.

View Article and Find Full Text PDF

Taste bud cells in the tongue transduce taste information from chemicals in food and transmit this information to gustatory neurons in the geniculate ganglion that innervate taste buds. The peripheral taste system is a dynamic environment where taste bud cells are continuously replaced, but further understanding of this phenomenon has been limited by the inability to directly observe this process. To overcome this challenge, we combined chronic in vivo two-photon laser scanning microscopy with genetic labeling of gustatory neurons and taste buds to observe how cells within the taste bud change over time.

View Article and Find Full Text PDF

Pharyngeal neuronal mechanisms governing sour taste perception in .

Elife

December 2024

Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea.

Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!