Analysis of carboxyl tail function in the skeletal muscle Cl- channel hClC-1.

Biochem J

Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia.

Published: July 2008

Human ClC-1 (skeletal muscle Cl- channel) has a long cytoplasmic C-tail (carboxyl tail), containing two CBS (cystathionine beta-synthase) domains, which is very important for channel function. We have now investigated its significance further, using deletion and alanine-scanning mutagenesis, split channels, GST (glutathione transferase)-pull-down and whole-cell patch-clamping. In tagged split-channel experiments, we have demonstrated strong binding between an N-terminal membrane-resident fragment (terminating mid-C-tail at Ser(720) and containing CBS1) and its complement (containing CBS2). This interaction is not affected by deletion of some sequences, suggested previously to be important, particularly in channel gating. Contact between CBS1 and CBS2, however, may make a major contribution to assembly of functional channels from such co-expressed complements, although the possibility that C-tail fragments could, in addition, bind to other parts of the membrane-resident component has not been eliminated. We now show such an interaction between a membrane-resident component terminating at Ser(720) (but with CBS1 deleted) and a complete C-tail beginning at Leu(598). Channel function is rescued in patch-clamped HEK-293T (human embryonic kidney) cells co-expressing these same fragments. From our own results and those of others, we conclude that the CBS1-CBS2 interaction is not sufficient, in itself, for channel assembly, but rather that this might normally assist in bringing some part of the CBS2/C-tail region into appropriate proximity with the membrane-resident portion of the protein. Previously conflicting and anomalous results can now be explained by an hypothesis that, for split channels to be functional, at least one membrane-resident component must include a plasma membrane trafficking signal between Leu(665) and Lys(680).

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20071489DOI Listing

Publication Analysis

Top Keywords

membrane-resident component
12
carboxyl tail
8
skeletal muscle
8
muscle cl-
8
cl- channel
8
channel function
8
split channels
8
ser720 cbs1
8
channel
6
membrane-resident
5

Similar Publications

Pyrenoids are algal CO-fixing organelles that mediate approximately one-third of global carbon fixation and hold the potential to enhance crop growth if engineered into land plants. Most pyrenoids are traversed by membranes that are thought to supply them with concentrated CO. Despite the critical nature of these membranes for pyrenoid function, they are poorly understood, with few protein components known in any species.

View Article and Find Full Text PDF

Evoked Weibel-Palade Body Exocytosis Modifies the Endothelial Cell Surface by Releasing a Substrate-Selective Phosphodiesterase.

Adv Sci (Weinh)

April 2024

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, von-Esmarch-Str. 56, 48149, Muenster, Germany.

Weibel Palade bodies (WPB) are lysosome-related secretory organelles of endothelial cells. Commonly known for their main cargo, the platelet and leukocyte receptors von-Willebrand factor (VWF) and P-selectin, WPB play a crucial role in hemostasis and inflammation. Here, the authors identify the glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5) as a WPB cargo protein and show that GDPD5 is transported to WPB following uptake from the plasma membrane via an unique endocytic transport route.

View Article and Find Full Text PDF

Plasma membrane-resident receptor kinases (RKs) are crucial for plants to sense endogenous and exogenous signals in regulating growth, development, and stress response. Upon perception of ligands by the extracellular domain, RKs are usually activated by auto- and/or trans-phosphorylation of the cytoplasmic kinase domain, which in turn phosphorylates downstream substrates to relay the signaling. Therefore, monitoring ligand-induced in vivo phosphorylation dynamics of RKs and their associated proteins provides mechanistic insight into RK activation and downstream signal transduction.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is a dynamic organelle that is amenable to major restructuring. Introduction of recombinant ER-membrane-resident proteins that form homo oligomers is a known method of inducing ER proliferation: interaction of the proteins with each other alters the local structure of the ER network, leading to the formation large aggregations of expanded ER, sometimes leading to the formation of organized smooth endoplasmic reticulum (OSER). However, these membrane structures formed by ER proliferation are poorly characterized and this hampers their potential development for plant synthetic biology.

View Article and Find Full Text PDF

Plasmodium falciparum GAP40 Plays an Essential Role in Merozoite Invasion and Gametocytogenesis.

Microbiol Spectr

June 2023

Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.

Cyclic invasion of red blood cells (RBCs) by merozoites is associated with the symptoms and pathology of malaria. Merozoite invasion is powered actively and rapidly by a parasite actomyosin motor called the glideosome. The ability of the glideosome to generate force to support merozoite entry into the host RBCs is thought to rely on its stable anchoring within the inner membrane complex (IMC) through membrane-resident proteins, such as GAP50 and GAP40.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!