Strategies to create thin films using layer-by-layer methods use oppositely charged polymeric polyelectrolytes for both or at least one component to beneficially exploit multitopic electrostatic interactions between the deposited layers with opposite charges. In contrast, the electrostatic deposition of tetracationic 5,10,15,20-tetrakis(1'-methyl-4'-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP(4+)) with tetraanionic polyoxometalates such as EuPW(11)O(39)(4-) or SiW(12)O(40)(4-) onto charged substrates, such as mica, or polar substrates, such as glass and indium-tin oxide (ITO), demonstrates that the use of polymeric components is not a priori necessary. The use of molecules in sequential dipping approaches requires a careful balance in the interaction energies between the oppositely charged molecules, as demonstrated by the observation that a tetraanionic porphyrin such as 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin does not form layers with TMPyP(4+). In the present case, these systems require several rounds of dipping to obtain films of uniform coverage and durability. The thin films deposited onto glass, quartz, ITO, and mica are surprisingly robust, since they are not removed by sonication in either organic solvents or 100 mM NaCl.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6257931 | PMC |
http://dx.doi.org/10.1021/la7031658 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, Carrer dels Til·lers, s/n, Bellaterra, 08193 Barcelona, Spain.
The influence of the film/substrate interface and the role of film thickness on the structural transition temperature for thin films of the asymmetric BTBT derivative 7-decyl-2-phenyl[1]benzothieno[3,2-][1]-benzothiophene (Ph-BTBT-10) have been addressed by using Kelvin probe force microscopy (KPFM) and synchrotron grazing incidence wide angle X-ray scattering (GIWAXS). Our data strongly suggest that the structural transformation from a single-layer phase to the thermodynamically stable bilayer structure develops from the bottom of the film to its surface. Contrary to observations in other organic semiconductor films, notably, the thinner the Ph-BTBT-10 film, the lower is the transition temperature.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
Halide perovskites have attracted recent attention as thermoelectric materials due to their low thermal conductivity combined with good charge transport characteristics. The tin halide perovskites hold the highest within metal halide perovskites and offer lower toxicity than lead-containing perovskites that are well-known for photovoltaics. In this study, we partially substitute Sn (II) with Ge (II) to form mixed metal CsSnGeI perovskite thin films that have substantially improved stability, remaining in the black orthorhombic phase after hours of ambient air exposure.
View Article and Find Full Text PDFSmall
January 2025
KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Non-layered 2D materials offer unique and more advantageous physicochemical properties than those of conventional 2D layered materials. However, the isotropic chemical bonding nature of non-layered materials hinders their lateral growth, making the synthesis of large-area continuous thin films challenging. Herein, a facile kinetically tailored chemical vapor deposition (KT-CVD) approach is introduced for the synthesis of 2D molybdenum nitride (MoN), a representative non-layered material.
View Article and Find Full Text PDFHeliyon
December 2024
Institute of Chemical Technologies and Analytics CTA, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria.
Adhesion at the interface between dissimilar materials in the semiconductor industry is an important topic, but reliable quantitative methods for strongly adhesive or highly plastic layers are hardly available. This study aims to investigate the suitability of the cross-sectional nanoindentation (CSN) method for determination of the critical energy release rate of thin film stacks in the presence of a polyimide layer as a representative structure for such a case. For this purpose, the adhesion of a deliberately weakened Si/SiO interface in a Si/SiO/Al/SiN/polyimide stack is examined by systematic variation of the experimental parameters.
View Article and Find Full Text PDFRSC Adv
January 2025
V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
Detecting small concentrations of nitro-compounds surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!