Adipocytes play a central role in whole-body energy homoeostasis. Complex regulatory transcriptional networks control adipogensis, with ligand-dependent activation of PPARgamma (peroxisome proliferator-activated receptor gamma) being a decisive factor. Yet the identity of endogenous ligands promoting adipocyte differentiation has not been established. Here we present a critical evaluation of the role of LOXs (lipoxygenases) during adipocyte differentiation of 3T3-L1 cells. We show that adipocyte differentiation of 3T3-L1 preadipocytes is inhibited by the general LOX inhibitor NDGA (nordihydroguaiaretic acid) and the 12/15-LOX selective inhibitor baicalein. Baicalein-mediated inhibition of adipocyte differentiation was rescued by administration of rosiglitazone. Treatment with baicalein during the first 4 days of the differentiation process prevented adipocyte differentiation; supplementation with rosiglitazone during the same period was sufficient to rescue adipogenesis. Accordingly, we demonstrate that adipogenic conversion of 3T3-L1 cells requires PPARgamma ligands only during the first 4 days of the differentiation process. We show that the baicalein-sensitive synthesis of endogenous PPARgamma ligand(s) increases rapidly upon induction of differentiation and reaches a maximum on days 3-4 of the adipocyte differentiation programme. The conventional platelet- and leucocyte-type 12(S)-LOXs and the novel eLOX-3 (epidermis-type LOX-3) are expressed in white and brown adipose tissue, whereas only eLOX-3 is clearly expressed in 3T3-L1 cells. We suggest that endogenous PPARgamma ligand(s) promoting adipocyte differentiation are generated via a baicalein-sensitive pathway involving the novel eLOX-3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/bj20030503 | DOI Listing |
SLAS Discov
January 2025
Bonds Biosystems, 27 Strathmore Rd, Natick, MA, USA. Electronic address:
Obesity and type 2 diabetes (T2D) are strongly linked to abnormal adipocyte metabolism and adipose tissue (AT) dysfunction. However, existing adipose tissue models have limitations, particularly in the stable culture of fat cells that maintain physiologically relevant phenotypes, hindering a deeper understanding of adipocyte biology and the molecular mechanisms behind differentiation. Current model systems fail to fully replicate in vivo metabolism, posing challenges in adipose research.
View Article and Find Full Text PDFFront Immunol
January 2025
Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.
Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.
Methods: Gene expression profiles of various cell subsets were compared by mining a public database.
World J Stem Cells
January 2025
Department of Orthopedic Surgery, Yeungnam University College of Medicine, Daegu 42415, South Korea.
Background: Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!