Conventional Agrobacterium-mediated transformation methods rely on complex and genotype-specific tissue culture media for selection, proliferation, and regeneration of genetically modified cells. Resulting transgenic plants may not only contain selectable marker genes but also carry fragments of the vector backbone. Here, we describe a new method for the production of transgenic plants that lack such foreign DNA. This method employs vectors containing the bacterial isopentenyltransferase (ipt) gene as backbone integration marker. Agrobacterium strains carrying the resulting ipt gene-containing "cytokinin" vectors were used to infect explants of various Solanaceous plant species as well as canola (Brassica napus). Upon transfer to hormone-free media, 1.8% to 9.9% of the infected explants produced shoots that contained a marker-free T-DNA while lacking the backbone integration marker. These frequencies often equal or exceed those for backbone-free conventional transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11248-008-9175-6DOI Listing

Publication Analysis

Top Keywords

transgenic plants
8
backbone integration
8
integration marker
8
cytokinin vectors
4
vectors mediate
4
mediate marker-free
4
marker-free backbone-free
4
backbone-free plant
4
plant transformation
4
transformation conventional
4

Similar Publications

Citrus transcription factor CsERF1 is involved in the response to citrus tristeza disease.

Front Plant Sci

January 2025

National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University/Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, China.

Introduction: Citrus tristeza virus (CTV) is a threat to the citrus production and causes severe economic losses to the citrus industry. Ethylene response factors (ERFs) play important roles in plant growth and stress responses. Although ERF genes have been widely studied in model plants, little is known about their role in biological stress responses in fruit trees, such as citrus.

View Article and Find Full Text PDF

TaWI12 is a member of the wound-induced (WI) protein family, which has been implicated in plant stress responses and developmental processes. Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies.

View Article and Find Full Text PDF

BrCYP71 mutation resulted in stay-green in pak choi (Brassica rapa L. ssp. chinensis).

Theor Appl Genet

January 2025

College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.

BrCYP71 encoding multifunctional oxidase was mapped using BSA-Seq and linkage analysis, and its function in stay-green of pak choi was verified through Arabidopsis heterologous transgenic experiment. Stay-green refers to the phenomenon that plant leaves remain green during senescence and even after death, which is of great significance for improving the commerciality of leafy vegetables during storage or transportation and extending their shelf life. In this study, we identified a stay-green mutant of pak choi and named it nye2.

View Article and Find Full Text PDF

A bHLH transcription factor RrUNE12 regulates salt tolerance and promotes ascorbate synthesis.

Plant Cell Rep

January 2025

Engineering Research Center of National Forestry and Grassland Administration for Rosa Roxburghii, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.

RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells.

View Article and Find Full Text PDF

The Asian Citrus Psyllid (ACP), Diaphorina citri, severely threatens citrus production worldwide by transmitting the greening (= Huanglongbing)-causing bacterium Candidatus Liberibacter asiaticus. There is growing evidence that the push-pull strategy is suitable to partially mitigate HLB by repelling ACP with transgenic plants engineered to produce repellents and attracting the vector to plants with a minimal disease transmission rate. Species that pull ACP away from commercial citrus plants have been identified, and transgenic plants that repel ACP have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!