Cross-bridge kinetics of fast and slow fibres of cat jaw and limb muscles: correlations with myosin subunit composition.

J Muscle Res Cell Motil

Discipline of Physiology and the Bosch Institute, University of Sydney, Building F13, Sydney, NSW, 2006, Australia.

Published: July 2008

Mechanical properties of the jaw-closing muscles of the cat are poorly understood. These muscles are known to differ in myosin and fibre type compositions from limb muscles. This work aims to correlate mechanical properties of single fibres in cat jaw and limb muscles with their myosin subunit compositions. The stiffness minimum frequency, f(min), which reflects isometric cross-bridge kinetics, was measured in Ca(2+)-activated glycerinated fast and slow fibres from cat jaw and limb muscles for temperatures ranging between 15 and 30 degrees C by mechanical perturbation analysis. At 15 degrees C, f(min) was 0.5 Hz for limb-slow fibres, 4-6 Hz for jaw-slow fibres, and 10-13 Hz for limb-fast and jaw-fast fibres. The activation energy for f(min) obtained from the slope of the Arrhenius plot for limb-slow fibres was 30-40% higher than values for the other three types of fibres. SDS-PAGE and western blotting using highly specific antibodies verified that limb-fast fibres contained IIA or IIX myosin heavy chain (MyHC). Jaw-fast fibres expressed masticatory MyHC while both jaw-fast and jaw-slow fibres expressed masticatory myosin light chains (MLCs). The nucleotide sequences of the 3' ends of the slow MyHC cDNAs isolated from cat masseter and soleus cDNA libraries showed identical coding and 3'-untranslated regions, suggesting that jaw-slow and limb-slow fibres express the same slow MyHC gene. We conclude that the isometric cross-bridge cycling kinetics of jaw-fast and limb-fast fibres detected by f(min) are indistinguishable in spite of differences in MyHC and light chain compositions. However, jaw-slow fibres, in which the same slow MyHCs are found in combination with MLCs of the jaw type, show enhanced cross-bridge cycling kinetics and reduced activation energy for cross-bridge detachment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10974-008-9129-xDOI Listing

Publication Analysis

Top Keywords

limb muscles
16
fibres
14
fibres cat
12
cat jaw
12
jaw limb
12
limb-slow fibres
12
jaw-slow fibres
12
cross-bridge kinetics
8
fast slow
8
slow fibres
8

Similar Publications

The main objective of this case and video is to demonstrate the surgical technique of navigated full-endoscopic decompression and sequestrectomy at the C7-T1 level to alleviate C8 nerve root compression and manage cervicobrachialgia. Cervicobrachialgia resulting from C7-T1 disc herniation is a quite rare yet painful condition that can significantly impair motor function in the upper limb. Traditionally, open surgeries can be invasive, with prolonged recovery times and/or fusion of the level with adjacent segment disease.

View Article and Find Full Text PDF

Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.

View Article and Find Full Text PDF

The lower limb is vascularized by the femoral artery, which continues as the popliteal artery. After the distal margin of the popliteus muscle, the popliteal artery divides into the anterior and posterior tibial arteries. Anatomical variations in the bifurcation of the popliteal artery are frequent.

View Article and Find Full Text PDF

The transgenic SOD1G93A mouse model is the most widely used animal model of amyotrophic lateral sclerosis (ALS), a fatal disease of motor neuron degeneration. While genetic background influences onset and progression variability of motor dysfunction, the C57BL/6 background most reliably exhibits robust ALS phenotypes; thus, it is the most widely used strain in mechanistic studies. In this model, paresis begins in the hindlimbs and spreads rostrally to the forelimbs.

View Article and Find Full Text PDF

Background: Spasticity is an upper motor neuron syndrome that exacerbates motor paralysis and is rarely associated with pain. This report elucidates the management of drug-resistant pain attributed to an adolescent brain tumor using botulinum therapy.

Case Presentation: A 15-year-old female patient experienced dizziness, developed muscle weakness in her upper extremities, and was diagnosed with diffuse glioblastoma of the pons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!