Generation of 6.6-microm optical parametric oscillation with periodically poled LiNbO3.

Appl Opt

Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

Published: April 1999

Greater than 6-microm-oscillation was demonstrated by means of optical parametric oscillation with periodically poled LiNbO3 (PPLN). The interaction length and thickness were 40 mm and 500 microm. The pump source used was a Q-switched Nd:YAG laser with a pulse duration of 120 ns and a repetition rate of 1 kHz. The tuning ranges of the idler waves were 6.57-6.56, 6.22-6.12, and 6.06-5.94 microm for PPLN wafers of 20-, 21.3-, and 22-microm periods, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.38.002560DOI Listing

Publication Analysis

Top Keywords

optical parametric
8
parametric oscillation
8
oscillation periodically
8
periodically poled
8
poled linbo3
8
generation 66-microm
4
66-microm optical
4
linbo3 greater
4
greater 6-microm-oscillation
4
6-microm-oscillation demonstrated
4

Similar Publications

AgGaS and Derivatives: Design, Synthesis, and Optical Properties.

Nanomaterials (Basel)

January 2025

College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Silver gallium sulfide (AgGaS) is a ternary ABX-type semiconductor featuring a direct bandgap and high chemical stability. Structurally resembling diamond, AgGaS has gained considerable attention as a highly promising material for nonlinear optical applications such as second harmonic generation and optical parametric oscillation. In attempts to expand the research scope, on the one hand, AgGaS-derived bulk materials with similar diamond-like configurations have been investigated for the enhancement of nonlinear optics performance, especially the improvement of laser-induced damage thresholds and/or nonlinear coefficients; on the other hand, nanoscale AgGaS and its derivatives have been synthesized with sizes as low as the exciton Bohr radius for the realization of potential applications in the fields of optoelectronics and lighting.

View Article and Find Full Text PDF

The current study aimed to quantify the length progression of enamel microcracks (EMCs) after debonding metal and ceramic brackets, implementing OCT as a diagnostic tool. The secondary objectives included a three-dimensional assessment of EMC width and depth and the formation of new EMCs. OCT imaging was performed on 16 extracted human premolars before bonding and after debonding.

View Article and Find Full Text PDF

Individuals with Down syndrome (DS) often present with severe periodontal disease at a young age. Adjuvant treatments to scaling and root planing (SRP), such as antimicrobial photodynamic therapy (aPDT), may benefit this population. This study evaluated the effectiveness of aPDT as an adjunct to SRP in individuals with DS.

View Article and Find Full Text PDF

The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.

View Article and Find Full Text PDF

Efficient optical parametric amplification in the thin film lithium niobate waveguides.

Sci Rep

January 2025

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631, People's Republic of China.

Prominent platforms based on thin-film lithium niobate (TFLN) are superior integrated-photonics platforms for efficient optical parametric amplification (OPA), however, previously few studies have been systematically reported the gain-boosting performance of TFLN waveguides compared to bulk LN waveguides. Here, we optimize two TFLN waveguides with dispersion engineering for high-efficiency and ultra-broadband gain of OPA, then report comparative results about the efficient ultra-broadband OPA of TFLN waveguides in the case of low loss, optimized waveguide length and pump power. Note that the efficient ultra-broadband OPA of TFLN waveguides is represented by the peak gain (71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!