Progression of retinal degeneration in a mouse model was studied in vivo with high-resolution spectral-domain optical coherence tomography (SD-OCT). Imaging in 3D with high depth resolution (<3 mum), SD-OCT resolved all the major layers of the retina of control C57BL/6J mice. Images of transgenic mice having a null mutation of the rhodopsin gene revealed the anatomical consequences of retinal degeneration: thinning of the outer retina, including the outer plexiform layer (OPL), outer nuclear layer (ONL), and inner and outer segments (IS/OS). We monitored the progression of retinal degeneration in rd1 mice (C3H/HeJ) by periodically imaging the same mice from the time the pups opened their eyes on P13 to P34. SD-OCT images showed that the outer retina (OPL, ONL, IS/OS) had already thinned by 73% (100 to 27 mum) at eye opening. The retina continued to degenerate, and by P20 the outer retina was not resolvable. The thickness of entire retina decreased from 228 mum (control) to 152 mum on P13 and to 98 mum by P34, a 57% reduction with the complete loss in the outer retina. In summary, we show that SD-OCT can monitor the progression of retinal degeneration in transgenic mice.

Download full-text PDF

Source
http://dx.doi.org/10.1167/8.1.17DOI Listing

Publication Analysis

Top Keywords

retinal degeneration
8
high-resolution spectral-domain
8
spectral-domain optical
8
optical coherence
8
coherence tomography
8
monitoring mouse
4
mouse retinal
4
degeneration high-resolution
4
tomography progression
4
progression retinal
4

Similar Publications

The rapid advancements in the field of genetics have significantly propelled the development of gene therapies, paving the way for innovative treatments of various hereditary disorders. This review focuses on the genetics of ophthalmologic conditions, highlighting the currently approved ophthalmic gene therapy and exploring emerging therapeutic strategies under development. Inherited retinal dystrophies represent a heterogeneous group of genetic disorders that manifest across a broad spectrum from infancy to late middle age.

View Article and Find Full Text PDF

Clinical and Structural Parameters in Autosomal Dominant Optic Atrophy Patients: A Cross-Sectional Study Using Optical Coherence Tomography.

J Neuroophthalmol

November 2024

Ophthalmology Department (AC-C, MF-R, SA-A, RA, BS-D), Seu Maternitat, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Faculty of Medicine and Health Sciences (AC-C, SA-A, BS-D), Universitat de Barcelona, Barcelona, Spain; Fundació Per La Recerca Biomèdica-IDIBAPS (MF-R, SA-A, BS-D), Barcelona, Spain; and Ophthalmology Department (MS-G), Consorci Mar Parc de Salut de Barcelona, Barcelona, Spain.

Background: Autosomal Dominant Optic Atrophy (ADOA) is a hereditary optic neuropathy characterized by retinal ganglion cell degeneration and optic nerve fiber loss. This study examined the correlation between clinical and structural parameters in patients with ADOA using optical coherence tomography (OCT) and explored potential clinical biomarkers.

Methods: A cross-sectional, case-control observational study included 27 patients with ADOA and 27 age- and sex-matched healthy controls.

View Article and Find Full Text PDF

Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.

Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.

View Article and Find Full Text PDF

Inferior sectoral chorioretinopathy in two patients with novel heterozygous mutations.

Ophthalmic Genet

January 2025

Departments of Medical Genetics and Ophthalmology & Visual Sciences, University of Alberta, Edmonton, Alberta, Canada.

Background: Pathogenic variants in , a kinesin family gene, cause MCLMR and FEVR. In MCLMR, chorioretinal atrophy is present in the majority of cases and can be a helpful diagnostic sign.

Cases: We present the cases of two patients with chorioretinal atrophy and microcephaly who carry novel mutations.

View Article and Find Full Text PDF

Inherited retinal degeneration (IRD) is a heterogeneous group of genetic disorders of variable onset and severity, with vision loss being a common endpoint in most cases. More than 50 distinct IRD phenotypes and over 280 causative genes have been described. Establishing a clinical phenotype for patients with IRD is particularly challenging due to clinical variability even among patients with similar genotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!