High-frequency electron paramagnetic resonance (EPR) and X-band electron-nuclear double resonance (ENDOR) spectroscopies were used to investigate the effect of gamma-irradiation on single crystals of L-tyrosine hydrochloride at room temperature. The oxidation product is the tyrosyl radical formed by hydrogen abstraction from the phenolic group; interestingly, on freshly irradiated crystals, two tyrosyl radicals were identified, characterized by slightly different magnetic parameters. In particular, one of the two radicals, with a gxx value of 2.00621, has its phenoxyl oxygen strongly hydrogen-bonded to one or more donors; to our knowledge, this is the lower gxx value reported for tyrosyl radicals. These two oxidation radicals are found to evolve very slowly to a third, single more stable radical conformation. To interpret the experimental data, a possible molecular scenario is presented, where the process of radical formation can be seen as a hydrogen atom transfer or a proton-coupled electron transfer. These processes seem to be controlled by the specific network of hydrogen-bond interactions present in the crystal. The results are discussed in relation to their relevance for the interpretation of EPR spectra of tyrosyl radicals in biological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp710220uDOI Listing

Publication Analysis

Top Keywords

tyrosyl radicals
16
radicals identified
8
radicals
6
three tyrosyl
4
identified l-tyrosine
4
l-tyrosine hcl
4
hcl crystals
4
crystals gamma-irradiation
4
gamma-irradiation magnetic
4
magnetic characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!