A beta-glucuronidase-activated prodrug approach was applied to 10-hydroxycamptothecin, a Camptotheca alkaloid with promising antitumor activity but poor water solubility. We synthesized a glucuronide prodrug of 10-hydroxycamptothecin ( 7) in which glucuronic acid is connected via a self-immolative 3-nitrobenzyl ether linker to the 10-OH group of 10-hydroxycamptothecin. Compound 7 was 80 times more soluble than 10-hydroxycamptothecin in aqueous solution at pH 4.0 and was stable in human plasma. Prodrug 7 was 10- to 15-fold less toxic than the parent drug to four human tumor cell lines. In the presence of beta-glucuronidase, prodrug 7 could be activated to elicit similar cytotoxicity to the parent drug in tumor cells. Enzyme kinetic studies showed that Escherichia coli beta-glucuronidase had a quite low K m of 0.18 microM for compound 7 and exhibited 520 times higher catalytic efficiency for 7 than for 6 (a glucuronide prodrug of 9-aminocamptothecin). Molecular modeling studies predicted that compound 7 would have a higher binding affinity to human beta-glucuronidase than compound 6. Prodrug 7 may be useful for selective cancer chemotherapy by a prodrug monotherapy (PMT) or antibody-directed enzyme prodrug therapy (ADEPT) strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm701151c | DOI Listing |
Acta Pharm Sin B
December 2024
Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.
Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.
View Article and Find Full Text PDFJ Control Release
January 2025
College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea. Electronic address:
Alzheimer's disease (AD) is the most commonly occurring brain disorder, characterized by the accumulation of amyloid-β (Aβ) and tau, subsequently leading to neurocognitive decline. 3-Amino-1-propanesulfonic acid (TPS) and its prodrug, currently under clinical trial III, serve as promising therapeutic agents targeting Aβ pathology by specifically preventing monomer-to-oligomer formation. Inspired by the potency of TPS prodrug, we hypothesized that conjugating TPS with human serum albumin (HSA) could enhance brain delivery and synergistically inhibit Aβ aggregation in mild to moderate AD.
View Article and Find Full Text PDFNat Med
January 2025
Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
The recent outbreak of Marburg virus (MARV) in Rwanda underscores the need for effective countermeasures against this highly fatal pathogen, with case fatality rates reaching 90%. Currently, no vaccines or approved treatments exist for MARV infection, distinguishing it from related viruses like Ebola. Our research demonstrates that the oral drug obeldesivir (ODV), a nucleoside analog prodrug, shows promising antiviral activity against filoviruses in vitro and offers significant protection in animal models.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Pulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!