Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Narcolepsy is a sleep disorder characterized by abnormal manifestations of rapid-eye-movement (REM) sleep and excessive daytime sleepiness. Using a canine model of the disease, we found that central D2 antagonists suppressed cataplexy, a form of REM-sleep atonia occurring in narcolepsy, whereas this symptom was aggravated by D2 agonists. The effect on cataplexy was stereospecific for the S(-) enantiomer of sulpiride (a D2 antagonist) and the R(+) enantiomer of 3-PPP (a D2 agonist). There was also a significant correlation between the in vivo pharmacological potency and in vitro drug affinity for D2 receptors (but not for D1 and alpha 2 receptors) among the seven central D2 antagonists tested. Selective D1 compounds were also tested; however, the results were inconsistent because both antagonists and agonists generally suppressed cataplexy. Our current results demonstrate that central D2-type receptors are critically involved in the control of cataplexy and REM sleep. Furthermore, the finding that small doses of D2 antagonists suppressed cataplexy and induced behavioral excitation, while small doses of D2 agonists aggravated cataplexy and induced sedation, suggests that this effect is mediated presynaptically. However, considering the fact that selective dopamine reuptake inhibitors did not modify cataplexy and that our previous pharmacological results demonstrated a preferential involvement of the noradrenergic system in the control of cataplexy, we believe that the effect of D2 compounds on cataplexy is mediated secondarily via the noradrenergic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6575243 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.11-09-02666.1991 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!