A novel assembled nanobiosensor QDs-ConA-beta-CDs-AuNPs was designed for the direct determination of glucose in serum with high sensitivity and selectivity. The sensing approach is based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) as an energy donor and gold nanoparticles (AuNPs) as an energy acceptor. The specific combination of concanavalin A (ConA)-conjugated QDs and thiolated beta-cyclodextrins (beta-SH-CDs)-modified AuNPs assembles a hyperefficient FRET nanobiosensor. In the presence of glucose, the AuNPs-beta-CDs segment of the nanobiosensor is displaced by glucose which competes with beta-CDs on the binding sites of ConA, resulting in the fluorescence recovery of the quenched QDs. Experimental results show that the increase in fluorescence intensity is proportional to the concentration of glucose within the range of 0.10-50 muM under the optimized experimental conditions. In addition, the nanobiosensor has high sensitivity with a detection limit as low as 50 nM, and has excellent selectivity for glucose over other sugars and most biological species present in serum. The nanobiosensor was applied directly to determine glucose in normal adult human serum, and the recovery and precision of the method were satisfactory. The unique combination of high sensitivity and good selectivity of this biosensor indicates its potential for the clinical determination of glucose directly and simply in serum, and provides the possibility to detect low levels of glucose in single cells or bacterial cultures. Moreover, the designed nanobiosensor achieves direct detection in biological samples, suggesting the use of nanobiotechnology-based assembled sensors for direct analytical applications in vivo or in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200701871 | DOI Listing |
Environ Toxicol Chem
January 2025
United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA.
Per- and polyfluoroalkyl substances (PFAS) are a large class of chemicals of concern for both human and environmental health because of their ubiquitous presence in the environment, persistence, and potential toxicological effects. Despite this, ecological hazard data are limited to a small number of PFAS even though there are over 4000 identified PFAS. Traditional toxicity testing will likely be inadequate to generate necessary hazard information for risk assessment.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
Introduction: This study aims to investigate the presence of class 1, 2, and 3 integrons in Acinetobacter baumannii isolates, evaluate the relationship between integrons and antibiotic resistance and determine the clonal relationship between isolates by PFGE method.
Methodology: A total of 188 A. baumannii strains between February 2020 and March 2023 were included in the study.
J Infect Dev Ctries
December 2024
Ankara Etlik City Hospital, Department of Medical Microbiology, Ankara, Turkey.
Introduction: Antimicrobial resistance remains a global threat with increasing morbidity and mortality rates. The aim of this study was to identify the antimicrobial resistance trends among ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) isolated from clinical samples at a Health Practice and Research Hospital over five years.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA.
Dry ice is one of the world's most in-demand commodities for cold-chain distribution of temperature-sensitive products. It offers an effective cooling solution without requiring mechanical refrigeration or specialized equipment. Dry ice is commonly produced as pellets and blocks.
View Article and Find Full Text PDFMol Divers
January 2025
Chemometrics and Cheminformatics Laboratory, Department of Analytical Chemistry, Tarbiat Modares University, Tehran, Iran.
Adenosine receptors (A, A, A, A) play critical roles in cellular signaling and are implicated in various physiological and pathological processes, including inflammations and cancer. The main aim of this research was to investigate structure-activity relationships (SAR) to derive models that describe the selectivity and activity of inhibitors targeting Adenosine receptors. Structural information for 16,312 inhibitors was collected from BindingDB and analyzed using machine learning methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!