Purpose: Decreasing the interocular correlation in random dot stereograms elevates disparity detection thresholds. Whether decorrelation also affects perceived depth from suprathreshold disparity magnitudes is unknown. The present study investigated the effects of interocular correlation and contrast on the magnitude of perceived depth in suprathreshold random dot stereograms.
Methods: Stereoscopic depth magnitude estimation as a function of percent interocular correlation of dynamic random dot stimuli was measured for five human subjects with clinically normal binocular vision. Each trial's stimulus was randomly assigned one of two magnitudes of either crossed or uncrossed relative disparity. Subjects verbally reported the direction and magnitude of perceived relative depth for each trial using a modulus-free scale. Normalized depth magnitude estimations as a function of the percent interocular correlation demonstrated the relationship between perceived depth, interocular correlation and contrast within subjects. Inter-subject variability was examined with comparisons of data across subjects.
Results: The depth magnitude perceived for a given magnitude of disparity declined as the percent of correlation of elements between the eyes decreased for both crossed and uncrossed directions. The effect generally was greater for uncrossed disparities and lower contrast. Some subjects demonstrated asymmetries in perceived depth for crossed vs. uncrossed disparities of the same magnitude.
Conclusions: Magnitude estimation of suprathreshold stimuli provided a method of studying performance characteristics of stereoscopic depth perception across the range of functional disparities. Differences found in depth magnitude estimation as a function of the sign of disparity suggest that the neural mechanisms underlying depth perception from uncrossed disparity are more sensitive to image decorrelation, particularly at low contrast, than the mechanisms underlying depth estimation from crossed disparity. These results could occur from differences in near and far disparity-sensitive neurons, from the geometrical relationship between disparity and physical distance in normal viewing, or from the response measure independent of perception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/OPX.0b013e3181643e65 | DOI Listing |
J Neurosci
January 2025
Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
We employed high-resolution fMRI to distinguish the impacts of anisometropia and strabismus amblyopia on the evoked ocular dominance (OD) response. Sixteen amblyopic participants (8 females) plus 8 individuals with normal vision (1 female), participated in this study for whom, we measured the difference between the response to stimulation of the two eyes, across areas V1-V4.In controls, the evoked OD response formed the expected striped pattern within V1.
View Article and Find Full Text PDFOphthalmol Sci
November 2024
Faculty of Medicine, Dentistry and Health Sciences, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia.
Purpose: Emerging clinical trials for inherited retinal disease (IRD) require an understanding of long-term progression. This longitudinal study investigated the genetic diagnosis and change in retinal structure and function over 10 years in rod-cone dystrophies (RCDs).
Design: Longitudinal observational follow-up study.
Eye (Lond)
January 2025
Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Objective: The study aimed to evaluate the interocular symmetry of macular sublayer thickness among healthy children aged 6-12 years.
Methods: The Shiraz Pediatric Eye Study included 500 randomly selected children who underwent SD-OCT of the macula and optical biometry using the IOLMaster-500. Exclusion criteria involved ocular abnormalities or axial lengths outside the 21.
Invest Ophthalmol Vis Sci
January 2025
UCL Institute of Ophthalmology, University College London, London, United Kingdom.
Purpose: The purpose of this study was to analyze the retinal sensitivity under photopic, mesopic, and scotopic conditions in a cohort of patients affected with KCNV2-associated retinopathy.
Methods: Cross-sectional evaluation of molecularly confirmed individuals was conducted. Data were obtained prospectively.
Invest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China.
Purpose: The purpose of this study was to investigate the relationship between fixation stability deficits in anisometropic amblyopia and various visual functions, as well as the underlying retinal structure.
Methods: All 164 patients with anisometropic amblyopia were recruited in this cross-sectional study. The contrast sensitivity function (CSF) was measured using the qCSF method, whereas the MP-3 microperimeter was used to assess fixation stability and locate the preferred retinal locus.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!