Study Design: Randomized controlled trial.
Objective: Determine the effectiveness a resistive exercise countermeasure with whole-body vibration in relation to lumbo-pelvic muscle and spinal morphology changes during simulated spaceflight (bed-rest).
Summary Of Background Data: Spinal lengthening, flattening of the spinal curves, increases in disc size, and muscle atrophy are commonly seen in spaceflight simulation. This may represent a risk for low back injury. Consideration of exercise countermeasures against these changes is critical for success of long-term spaceflight missions.
Methods: Twenty healthy male subjects underwent 8-weeks of bed-rest with 6-months follow-up and were randomly allocated to an inactive control or countermeasure exercise group. Magnetic resonance imaging of the lumbo-pelvic region was conducted at regular time-points during and after bed-rest. Using uniplanar images at L4, cross-sectional areas of the multifidus, lumbar erector spinae, quadratus lumborum, psoas, anterolateral abdominal, and rectus abdominis muscles were measured. Sagittal scans were used to assess lumbar spine morphology (length, sagittal disc area and height, and intervertebral angles).
Results: The countermeasure group exhibited less multifidus muscle atrophy (P = 0.024) and its atrophy did not persist long-term as in the control group (up to 3-months; P < 0.006). Spinal lengthening (P = 0.03) and increases in disc area (P = 0.041) were also reduced. Significant partial correlations (P < 0.001) existed between spinal morphology and muscle cross-sectional area changes.
Conclusion: The resistive vibration exercise countermeasure reduced, but did not entirely prevent, multifidus muscle atrophy and passive spinal tissue deconditioning during bed-rest. Atrophy of the multifidus muscles was persistent long-term in the inactive subjects. Future work could consider closer attention to spinal posture during exercise and optimizing exercise dose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/BRS.0b013e3181657f98 | DOI Listing |
Anesth Analg
February 2025
SC Terapia Intensiva Neurochirurgica, Ospedale San Carlo Borromeo, ASST Santi Paolo e Carlo, Milano, Italy.
Background: Computed tomography (CT)-derived low muscle mass is associated with adverse outcomes in critically ill patients. Muscle ultrasound is a promising strategy for quantitating muscle mass. We evaluated the association between baseline ultrasound rectus femoris cross-sectional area (RF-CSA) and intensive care unit (ICU) mortality.
View Article and Find Full Text PDFNeurology
January 2025
The Dubowitz Neuromuscular Centre, Developmental Neurosciences Department, University College London, Great Ormond Street Institute of Child Health, United Kingdom.
Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.
View Article and Find Full Text PDFEssential amino acid (EAA) supplementation, including conditionally essential amino acid (CEAA) and branched-chain amino acids (BCAA) supplementation, has been suggested as a mechanism to optimize patient outcomes by counteracting the atrophy associated with orthopedic procedures. We sought to investigate the effect of EAA supplementation in the perioperative period on patients undergoing orthopedic and spine surgery, specifically whether it is associated with (1) reductions in postoperative muscle atrophy and (2) improved postoperative function including range of motion, strength, and mobility. We conducted a systematic review of the literature.
View Article and Find Full Text PDFIndian J Crit Care Med
January 2025
Resistant Schizophrenia Consultation, Hospital Júlio de Matos, Unidade Local de Saúde São José, Centro Clínico Académico de L, Lisboa, Portugal.
Finsterer J, Marques JG. Continuous Infusion of Propofol or Dexmedetomidine should not be the First Choice to Prevent Postoperative Delirium after Hip Fracture. Indian J Crit Care Med 2025;29(1):86-87.
View Article and Find Full Text PDFOrthop Res Rev
January 2025
Scientific Department, Scientific and Research Institute of Rehabilitation of National Pirogov Memorial Medical University, Vinnytsia, Ukraine.
The formation of a functional tibial stump after combat injuries with extensive tissue damage is sometimes difficult. We describe a case of reconstruction of the tibial stump after a mine-blast injury. In this case, the fibula was completely removed as a result of fracture, and the tibia was amputated at the border of the upper and middle thirds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!