A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heat shock protein expression is highly sensitive to ischemia-reperfusion injury in rat kidneys. | LitMetric

Renal injury is known to trigger upregulation of many intracellular signal proteins, but those most sensitive in responding to renal injury remain debatable. We used gene microarray analysis to compare gene expression in rat kidneys subjected to early ischemia-reperfusion injury (30 min of renal ischemia and 3 hr of reperfusion) with non-ischemic kidneys as controls. Among 31,100 genes analyzed, microarray analysis revealed 21 genes with >3-fold increase in expression in ischemic kidneys compared to control non-ischemic kidneys. These upregulated genes included heat shock protein 70 (43-fold), heat shock protein 27 (12-fold), heme oxygenase-1 (10-fold), kidney injury molecule-1 (8-fold), and several subtypes of S100 calcium-binding proteins (3.1- to 7.5-fold). Following a prolonged reperfusion period (48 hr) after 30 min of ischemia, acute tubular necrosis was obvious in the S3 segment of proximal tubules of ischemic kidneys. Injured proximal tubules showed upregulated expression of heat shock protein 70 by immunohistochemistry and by Western blotting. These data suggest that heat shock proteins (eg, heat shock protein 70, heat shock protein 27, and heme oxygenase-1) are crucial for renal cell response to ischemic injury and that heat shock protein 70 is a highly sensitive intracellular marker of ischemia-reperfusion injury.

Download full-text PDF

Source

Publication Analysis

Top Keywords

heat shock
32
shock protein
28
ischemia-reperfusion injury
12
heat
8
highly sensitive
8
rat kidneys
8
renal injury
8
microarray analysis
8
non-ischemic kidneys
8
ischemic kidneys
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!