Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Protein kinase A signaling has long been known to play an important role in cardiac function. Dysregulation of the protein kinase A system, caused by mutation of the protein kinase A regulatory subunit gene PRKAR1A, causes the inherited tumor syndrome Carney complex, which includes cardiac myxomas as one of its cardinal features. Mouse models of this genetic defect have been unsatisfactory because homozygote null animals die early in development and heterozygotes do not exhibit a cardiac phenotype.
Methods And Results: To study the cardiac-specific effects resulting from complete loss of Prkar1a, we used cre-lox technology to generate mice lacking this protein specifically in cardiomyocytes. Conditional knockout mice died at day 11.5 to 12.5 of embryogenesis with thin-walled, dilated hearts. These hearts showed elevated protein kinase A activity and decreased cardiomyocyte proliferation before demise. Analysis of the expression of transcription factors required for cardiogenesis revealed downregulation of key cardiac transcription factors such as the serum response factor, Gata4, and Nkx2-5. Although heart wall thickness was reduced overall, specific areas exhibited morphological changes consistent with myxomatous degeneration in the walls of knockout hearts.
Conclusions: Loss of Prkar1a from the heart causes a failure of proper myocardial development with subsequent cardiac failure and embryonic demise. These changes appear to be due to suppression of cardiac-specific transcription by increased protein kinase A activity. These biochemical changes lead to myxoma-like changes, indicating that these mice may be a good model with which to study the formation of these tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCULATIONAHA.107.759233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!