Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent studies have demonstrated the importance of insulin or insulin-like growth factor 1 (IGF-1) for regulation of pancreatic beta-cell mass. Given the role of tuberous sclerosis complex 2 (TSC2) as an upstream molecule of mTOR (mammalian target of rapamycin), we examined the effect of TSC2 deficiency on beta-cell function. Here, we show that mice deficient in TSC2, specifically in pancreatic beta cells (betaTSC2(-/-) mice), manifest increased IGF-1-dependent phosphorylation of p70 S6 kinase and 4E-BP1 in islets as well as an initial increased islet mass attributable in large part to increases in the sizes of individual beta cells. These mice also exhibit hypoglycemia and hyperinsulinemia at young ages (4 to 28 weeks). After 40 weeks of age, however, the betaTSC2(-/-) mice develop progressive hyperglycemia and hypoinsulinemia accompanied by a reduction in islet mass due predominantly to a decrease in the number of beta cells. These results thus indicate that TSC2 regulates pancreatic beta-cell mass in a biphasic manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2293082 | PMC |
http://dx.doi.org/10.1128/MCB.01695-07 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!