In the present study, we studied N,N-dimethyl-D-erythro-sphingosine (DMS)-induced cell death and its signaling mechanism in U937 human monocytes. We found that DMS induced cell death in a concentration-dependent manner, while sphingosine 1-phosphate did not. DMS also induced DNA fragmentation, nuclear disruption, and cytochrome c release from mitochondria in a concentration- and time-dependent manner, implying apoptotic cell death. DMS was found to increase mitochondrial membrane potential (MMP) immediately after addition of DMS and to decrease MMP at 2h after addition. However, sphingosine kinase inhibitors and PKC inhibitors did not induce cell death in U937 cells, a result that appears to exclude sphingosine kinase and PKC as target molecules of DMS in the cell death induction process. Furthermore, DMS modulated the activity of several signaling molecules. DMS induced activation of JNK and p38 MAP kinase, while it decreased the activity of ERK and Akt kinase. However, decrease of MMP, inhibition of JNK, p38 MAP kinase, ERK, or Akt with specific inhibitors could not mimic the DMS-induced cell death, implying multiple concerted processes are involved in DMS-induced cell death. In summary, DMS induced apoptotic cell death via modulation of MMP, JNK, p38 MAP kinase, ERK, and Akt kinase, but not through inhibition of sphingosine kinase or PKC in U937 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prostaglandins.2008.01.001 | DOI Listing |
JAMA Dermatol
January 2025
Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.
Background: Interest in noninvasive treatment of basal cell carcinoma (BCC) has been increasing. For superficial BCC, it has been demonstrated that imiquimod cream, 5%, has high long-term efficacy, but for nodular BCC (nBCC), long-term evidence is sparse.
Objectives: To evaluate whether superficial curettage (SC) followed by imiquimod cream, 5%, is noninferior to surgical excision (SE) in nBCC after 5 years of treatment.
Bull Math Biol
January 2025
Department of Mathematics, University of Manitoba, 340 UMSU University Centre, Winnipeg, MB, R3T 2N2, Canada.
The immune checkpoint inhibitor, anti-programmed death protein-1 (anti-PD-1), enhances adaptive immunity to kill tumor cells, and the oncolytic virus (OV) triggers innate immunity to clear the infected tumor cells. We create a mathematical model to investigate how the interaction between adaptive and innate immunities under OV and anti-PD-1 affects tumor reduction. For different immunity strength, we create the corresponding virtual baseline patients and cohort patients to decipher the major factors determining the treatment outcome.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!