It was recently discovered that a subset of osteoblasts functions as a key component of the hematopoietic stem cells (HSC) niche in vivo, controlling HSC self-renewal and multi-lineage differentiation. Disruption of Smad4 gene specifically in osteoblasts leads to a remarkable decrease of osteoblast number and endosteal surface area. In order to elucidate if the osteoblast loss has any effect on hematopoietic activity, the bone marrow (BM) and extramedullary hematopoiesis in the osteoblast-specific Smad4 knockout mice were systematically analyzed, the proportions of mature hematocytes in BM, liver and spleen were detected by flow cytometry, the hematopoietic progenitor number in different stages was measured by colong-forming assay, CFU-S and analysis of LSK cells. The results indicated that the conditional mutant mice demonstrated normal BM hematopoiesis without sign of extramedullary hematopoiesis. Furthermore, the proportion of hematopoietic progenitor cells was normal, while cell number/body weight of the conditional knockout mice increased. It is concluded that hematopoiesis is normally maintained in osteoblast-specific Smad4 knockout mice, and osteoblast loss does not of necessity result in the decrease in BM hematopoiesis.
Download full-text PDF |
Source |
---|
Res Vet Sci
July 2022
Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, U.P., India. Electronic address:
Cell lineage determination during mesenchymal stem cell (MSCs) differentiation is a highly orchestrated process involving diverse signaling pathways and distinct classes of regulatory molecules. Bone morphogenetic protein (BMP) signaling positively influence the osteoblast lineage determination, whereas the Notch signaling may have a dimorphic action. Effective regenerative therapy for repairing bone defects requires ample knowledge of the signaling pathways responsible for the differentiation of MSCs.
View Article and Find Full Text PDFNat Commun
January 2022
Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Mechanical force is critical for the development and remodeling of bone. Here we report that mechanical force regulates the production of the metabolite asymmetric dimethylarginine (ADMA) via regulating the hydrolytic enzyme dimethylarginine dimethylaminohydrolase 1 (Ddah1) expression in osteoblasts. The presence of -394 4 N del/ins polymorphism of Ddah1 and higher serum ADMA concentration are negatively associated with bone mineral density.
View Article and Find Full Text PDFInt J Cardiol
September 2017
Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China. Electronic address:
Background: Emerging evidences have indicated that long non-coding RNAs (lncRNAs) play vital roles in cardiovascular physiology and pathology. The lncRNA MALAT1, a highly abundant and conserved imprinted gene, has been implicated in many cardiovascular diseases. However, the function of MALAT1 in calcific aortic valve disease (CAVD) remains unknown.
View Article and Find Full Text PDFJ Cell Physiol
November 2014
Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
The aim of this study was to investigate if chemically produced nanotopography on titanium (Ti) surface induces osteoblast differentiation of cultured human bone marrow mesenchymal stem cells (hMSCs) by regulating the expression of microRNAs (miRs). It was demonstrated that Ti with nanotopography induces osteoblast differentiation of hMSCs as evidenced by upregulation of osteoblast specific markers compared with untreated (control) Ti at day 4. At this time-point, miR-sequencing analysis revealed that 20 miRs were upregulated (>twofold) while 20 miRs were downregulated (>threefold) in hMSCs grown on Ti with nanotopography compared with control Ti.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2013
Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan; Department of Dental Anesthesiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan.
The neuropeptide Y (NPY) system is known as one of the major neural signaling pathways. NPY, produced by peripheral tissues including osteoblasts, is known to bind to the Y1 receptor. Recently, osteoblast-specific Y1 receptor knockout mice were developed and were found to have a high bone mass phenotype, indicating a role for the NPY-Y1 receptor axis as a regulator of bone homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!