The study was supposed to investigate the inhibitory effect of antisense phosphorothioate oligodeoxynucleotide (ASPSODN) targeting hTERT mRNA on gene of interest in K562 cells and influence of ASPSODN on telomerase activity and apoptosis of K562 cells. Human leukemia cell line K562 was transfected by liposome with ASPSODN and SPSODN (sense phosphorothioate oligodeoxynucleotide) at different concentrations (0.2, 0.6, 1.0 micromol/L). At the same time, blank control, liposome control and SPSODN groups were designed for comparison. The transfected cells were collected and detected at 24 and 48 hours; the expression of target gene hTERT mRNA and telomerase activity were detected by RT-PCR and TRAP-ELISA respectively, and cell apoptosis was assayed by flow cytometry. The results showed that after K562 cells were transfected for 24 hours, the expression of hTERT mRNA had no difference between liposome control (0.80+/-0.24), 0.2 micromol/L ASPSODN (0.69+/-0.12), 0.2 micromol/L SPSODN (0.72+/-0.25) and blank control (0.85+/-0.28), but the expression of hTERT mRNA in 0.6 micromol/L ASPSODN group (0.42+/-0.16) remarkably decreased as compared with liposome control group, 0.6 micromol/L SPSODN (0.69 +/- 0.26) had no obvious effect on the expression of hTERT mRNA, the expression of hTERT mRNA in 1.0 micromol/L ASPSODN and SPSODN groups both decreased; mortality of K562 cells transfected by liposome with 1.0 micromol/L ASPSODN and SPSODN remarkably increased. After 24 hours, telomerase relative activity of K562 cells showed no significant difference between blank control (88.9%) and liposome control (77.7%). The telomerase relative activities of K562 cells treated with 0.2, 0.6, 1.0 micromol/L ASPSODN were 60.6%, 52%, 58.2% respectively. There was significant difference as compared with blank control; 0.6 micromol/L ASPSODN showed significant difference (p=0.037), as compared with liposome control group. The telomerase relative activities in K562 cells treated with 0.2, 0.6, 1.0 micromol/L SPSODN were 76.1%, 72.2%, 65.7% respectively, but the telomerase relative activities of K562 cells in 0.2, 0.6 micromol/L SPSODN groups was not inhibited obviously. When K562 cells were treated for 48 hours, telomerase relative activity of K562 cells in each ASPSODN groups restored. It showed that telomerase relative activities of K562 cells treated with 0.2, 0.6, 1.0 micromol/L ASPSODN were 84.1%, 82.3%, 79.6% respectively, while telomerase relative activities of K562 cells treated with 0.2, 0.6, 1.0 micromol/L SPSODN for 48 hours were 74.8%, 74.5%, 67.9% respectively. Telomerase activity of K562 cells could not be inhibited by 0.2 and 0.6 micromol/L SPSODN. After culturing for 48 hours, the cell apoptosis rates of K562 in 0.6 micromol/L ASPSODN, 0.6 micromol/L SPSODN, liposome control and blank control groups were (4.82+/-0.39)%, (1.83+/-0.34)%, 1.84+/-1.04)%, (1.07+/-0.74)% respectively. There was difference between ASPSODN and SPSODN groups (p<0.05), but the significant difference was found in ASPSODN group as compared with liposome control and blank control (p<0.01). It is concluded that the ASPSODN targeting hTERT can specifically inhibit the expression of hTERT mRNA in K562 cells and significantly suppress the telomerase activity of K562 cells at 0.6 micromol/L, which inhibitory time is short. The ASPSODN at high concentration (1.0 micromol/L) shows definite cytotoxicity. 0.6 micromol/L of ASPSODN significantly induces cell apoptosis, while no such effect was seen in SPSODN group.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103-287, 41125, Modena, Italy.
The present study was aimed at revealing the metabolic changes that occurred in the cellular lipid pattern of acute and chronic myeloid leukaemia cells following treatment with cannabidiol (CBD). CBD is a non-psychoactive compound present in Cannabis sativa L., which has shown an antiproliferative action in these type of cancer cells.
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
Silencers, the yin to enhancers' yang, play a pivotal role in fine-tuning gene expression throughout the genome. However, despite their recognized importance, comprehensive identification of these regulatory elements in the genome is still in its early stages. We developed a method called Ss-STARR-seq to directly determine the activity of silencers in the whole genome.
View Article and Find Full Text PDFESMO Open
January 2025
Yale Cancer Center, Yale School of Medicine, New Haven, USA. Electronic address:
Background: Natural killer (NK) cells are important contributors to antitumor immunity in clear-cell renal cell carcinoma (ccRCC). However, their phenotype, function, and association with clinical outcomes in ccRCC remain poorly understood.
Materials And Methods: We analyzed single-cell RNA sequencing data from 13 primary tumors, 1 localized tumor extension, and 1 metastasis from ccRCC patients at different clinical stages.
PLoS One
January 2025
Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
Background: The challenges associated with traditional drug screening, such as high costs and long screening times, have led to an increase in the use of single-cell isolation technologies. Small sample volumes are required for high-throughput, cell-based assays to reduce assay costs and enable rapid sample processing. Using microfluidic chips, single-cell analysis can be conducted more effectively, requiring fewer reagents and maintaining biocompatibility.
View Article and Find Full Text PDFPlatelets
December 2025
Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA.
Platelet-like particles (PLPs), derived from megakaryocytic cell lines MEG-01 and K-562, are widely used as a surrogate to study platelet formation and function. We demonstrate by RNA-Seq that PLPs are transcriptionally distinct from platelets. Expression of key genes in signaling pathways promoting platelet activation/aggregation, such as the PI3K/AKT, protein kinase A, phospholipase C, and α-adrenergic and GP6 receptor pathways, was missing or under-expressed in PLPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!