Regional specificity of magnetization transfer imaging in multiple sclerosis.

J Neuroimaging

Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, New York, USA.

Published: April 2008

Background: The goal of this study was to develop and validate a method for generation of regional magnetization transfer ratio (MTR). We also studied the topography of MTR changes in multiple sclerosis (MS) and in normal controls (NC), and preliminarily examined the clinical usefulness of this method.

Methods: We examined 45 patients with MS (relapsing remitting [RR] = 28 and secondary progressive[SP] = 17] and 19 NC. Mean disease duration was 14.3 years and median Expanded Disability Status Scale was 3.0. Regions of the brain were determined using semiautomated brain region extraction (SABRE). Twenty-six regional masks were automatically applied to MTR maps that were further split into gray matter (GM) and white matter (WM)compartments.

Results: Mean MTR from 12 SABRE regions differed significantly between MS patients and NC. For WM, all regional mean MTRs differed significantly between RR, SP, and NC participants(P < .001). In regression analysis, only 3 regions remained significantly different when corrected for total T2-LV. The regression model predicting disability selected GM mean MTR of the right medial inferior frontal region (P = .031).

Conclusions: The study results showed that this regional MTR approach is reproducible, reliable and clinically relevant. MTI changes occur selectively in specific sub-regions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1552-6569.2007.00198.xDOI Listing

Publication Analysis

Top Keywords

magnetization transfer
8
multiple sclerosis
8
mtr
6
regional
5
regional specificity
4
specificity magnetization
4
transfer imaging
4
imaging multiple
4
sclerosis background
4
background goal
4

Similar Publications

Artificial heterostructures are often realized by stacking different materials to present new emerging properties that are not exhibited by their individual constituents. In this work, non-layered two-dimensional α-MnSe nanosheets were transferred onto LaMnO (LMO) films to obtain a multifunctional heterostructure. The high crystal quality of the MnSe/LMO heterostructure was revealed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy measurements.

View Article and Find Full Text PDF

Background: Wernicke-Korsakoff encephalopathy is a metabolic disease caused by vitamin B1 deficiency that predominantly affects alcoholic patients. Its clinical picture is characterized mainly by altered mental status with memory deficits, ophthalmoparesis, and ataxia, although other clinical manifestations may also be present. The current case presents certain clinical difficulties regarding the diagnosis when confronting an atypical presentation of a classical disease in an acute setting when a decision to administer an intravenous thrombolytic agent needs to be made.

View Article and Find Full Text PDF

This research uses perfluorocarbons (PFCs) as effective alternatives to traditional toxic solvents in reversible -hydrogen-induced polarization (PHIP) for NMR signal enhancement. Hydrogen solubility in PFCs is shown here to be an order of magnitude higher than in typical organic solvents by determination of Henry's constants. We demonstrate how this high H solubility enables the PFCs to deliver substantial polarization transfer from -hydrogen, achieving up to 2400-fold signal gains for H NMR detection and 67,000-fold (22% polarization) for N NMR detection at 9.

View Article and Find Full Text PDF

Spin and valley polarizations (P and P) and tunneling magnetoresistance (TMR) are demonstrated in the ferromagnetic/barrier/normal/barrier/ferromagnetic WSe junction, with the gate voltage and off-resonant circularly polarized light (CPL) applied to the two barrier regions. The minimum incident energy of non-zero spin- and valley-resolved conductance has been derived, which is consistent with numerical calculations and depends on the electric potential U, CPL intensity ΔΩ, exchange field h, and magnetization configuration: parallel (P) or antiparallel (AP). For the P (AP) configuration, the energy region with P = -1 or P = 1 is wider (narrower) and increases with ΔΩ.

View Article and Find Full Text PDF

Enhancing Stability and Activity of Fe-based Catalysts for Propane Dehydrogenation via Anchoring Isolated Fe-Cl Sites.

ChemSusChem

January 2025

Beijing Jiaotong University, School of Science, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China, 100044, Beijing, CHINA.

The eco-friendly features and desirable catalytic activities of Fe-based catalysts make them highly promising for propane dehydrogenation (PDH). However, simultaneously improving their stability and activity remains a challenge. Here, we present a strategy to address these issues synergistically by anchoring single-atom Fe-Cl sites in Al3+ vacancies of Al2O3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!