Effects of methylmercury and spatial complexity on foraging behavior and foraging efficiency in juvenile white ibises (Eudocimus albus).

Environ Toxicol Chem

Department of Wildlife Ecology and Conservation, P.O. Box 110430, University of Florida, Gainesville, Florida 32611, USA.

Published: August 2008

Methylmercury is a globally distributed neurotoxin, endocrine disruptor, and teratogen, the effects of which on wildlife at environmentally relevant levels are largely unknown. In birds, foraging efficiency and learning may be sensitive endpoints for sublethal methylmercury toxicity, and these endpoints also may be biologically relevant at the population level. In the present study, groups of wild-caught, prefledgling white ibises (Eudocimus albus) were raised in a free-flight, open-air aviary on diets that approximated the measured range of methylmercury exposure in the Everglades ecosystem (0, 0.05, 0.1, and 0.3 mg/kg/d). The effect of methylmercury exposure on group foraging efficiency was examined by allowing birds to forage on 200 fathead minnows (Pimephales promelas) in artificial ponds for 15 min by straining the arenas' contents through a seine net and counting all remaining prey. Additionally, we varied the difficulty of foraging by these tactile feeding birds by adding multiple levels of structural complexity (e.g., increased vegetation and prey refugia) to the pond. Structural complexity affected both foraging efficiency and the rate of increase in efficiency over time (improvement). Methylmercury exposure affected foraging efficiency (p = 0.03). It did not affect foraging improvement in the face of increasingly challenging environments, however, and the dose-response relationship was nonlinear (e.g., the control and high-exposure groups were the least efficient foragers). Evidence for an effect of methylmercury on foraging efficiency therefore was inconclusive because of unpredicted results and no interaction with time or habitat complexity. These data suggest a nonlinear dose-response relationship at low levels of methylmercury exposure; future research is needed to verify this hypothesis. This appears to be the first experimental demonstration of the effects of habitat complexity on foraging efficiency in long-legged wading birds.

Download full-text PDF

Source
http://dx.doi.org/10.1897/07-466DOI Listing

Publication Analysis

Top Keywords

foraging efficiency
28
methylmercury exposure
16
complexity foraging
12
foraging
10
efficiency
8
white ibises
8
ibises eudocimus
8
eudocimus albus
8
structural complexity
8
dose-response relationship
8

Similar Publications

[The many ways flowers send signals to pollinators].

Biol Aujourdhui

January 2025

Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.

The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.

View Article and Find Full Text PDF

The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.

View Article and Find Full Text PDF

For similar species to co-occur in places where resources are limited, they need to adopt strategies that partition resources to reduce competition. Our understanding of the mechanisms behind resource partitioning among sympatric marine predators is evolving, but we lack a clear understanding of how environmental change is impacting these dynamics. We investigated spatial and trophic resource partitioning among three sympatric seabirds with contrasting biological characteristics: greater crested terns Thalasseus bergii (efficient flyer, limited diver, and preference for high quality forage fish), little penguins Eudyptula minor (flightless, efficient diver, and preference for high quality forage fish) and silver gulls Chroicocephalus novaehollandiae (efficient flyer, limited diver and generalist diet).

View Article and Find Full Text PDF

MaxEnt-Based Predictions of Suitable Potential Distribution of Under Current and Future Climate Change.

Plants (Basel)

January 2025

Key Laboratory of Efficient Forage Production Mode, Ministry of Agriculture and Rural Affair, College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China.

Grassland degradation is a serious ecological issue in the farming-pastoral ecotone of northern China. Utilizing native grasses for the restoration of degraded grasslands is an effective technological approach. is a superior indigenous grass species for grassland ecological restoration in northern China.

View Article and Find Full Text PDF

Data Fusion Applied to the Leader-Based Bat Algorithm to Improve the Localization of Mobile Robots.

Sensors (Basel)

January 2025

Department of Electrical Engineering, Universidade Federal do Espírito Santo, Vitória 29075-910, ES, Brazil.

The increasing demand for autonomous mobile robots in complex environments calls for efficient path-planning algorithms. Bio-inspired algorithms effectively address intricate optimization challenges, but their computational cost increases with the number of particles, which is great when implementing algorithms of high accuracy. To address such topics, this paper explores the application of the leader-based bat algorithm (LBBA), an enhancement of the traditional bat algorithm (BA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!