Breath-by-breath measurement of oxygen using a compact optical sensor.

J Biomed Opt

Dublin City University, National Centre for Sensor Research, Optical Sensors Laboratory, Glasnevin, Dublin 9, Ireland. conor.

Published: June 2008

We report on the development of a novel optical oxygen sensor for breath monitoring applications using the technique of phase fluorometry. The principal design criteria are that the system be compact, lightweight, and employ a disposable sensing element (while performing competitively with current commercial analyzers). The oxygen-sensitive, luminescent ruthenium complex Ru[dpp](3)(2+) is encapsulated in a sol-gel matrix and deposited onto a custom-designed, polymer sensor chip that provides significantly improved luminescence capture efficiency. The performance of the sensor module is characterized using a commercially available lung simulator. A resolution of 0.03% O(2) is achieved, which compares well with commercial breath monitoring systems and, when combined with its immunity to humidity and ability to respond effectively across a broad range of breathing rates, makes this device an extremely promising candidate for the development of a practical, low-cost biodiagnostic tool.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.2870092DOI Listing

Publication Analysis

Top Keywords

breath monitoring
8
breath-by-breath measurement
4
measurement oxygen
4
oxygen compact
4
compact optical
4
sensor
4
optical sensor
4
sensor report
4
report development
4
development novel
4

Similar Publications

Targeting Reactive Oxygen Species for Diagnosis of Various Diseases.

J Funct Biomater

December 2024

Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.

Reactive oxygen species (ROS) are generated predominantly during cellular respiration and play a significant role in signaling within the cell and between cells. However, excessive accumulation of ROS can lead to cellular dysfunction, disease progression, and apoptosis that can lead to organ dysfunction. To overcome the short half-life of ROS and the relatively small amount produced, various imaging methods have been developed, using both endogenous and exogenous means to monitor ROS in disease settings.

View Article and Find Full Text PDF

Monitoring respiration rate (RR) is crucial in various healthcare settings, particularly during demanding (physical) activities where respiratory dynamics are critical indicators of health status. This study aimed to evaluate the accuracy of photoplethysmography (PPG)-based monitoring of RR during high-intensity interval training (HIIT) and its potential applications in healthcare. Between January and March 2024, healthy volunteers participated in a cycling HIIT session with increasing resistance levels.

View Article and Find Full Text PDF

Background: Telehealth programs and wearable sensors that enable patients to monitor their vital signs have expanded due to the COVID-19 pandemic. The electronic National Early Warning Score (e-NEWS) system helps identify and respond to acute illness.

Objective: This study aimed to implement and evaluate a comprehensive telehealth system to monitor vital signs using e-NEWS for patients receiving integrated home-based medical care (iHBMC).

View Article and Find Full Text PDF

Bioreactor contamination monitoring using off-gassed volatile organic compounds (VOCs).

Anal Bioanal Chem

December 2024

Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Sacramento, CA, USA.

Metabolically active cells emit volatile organic compounds (VOCs) that can be used in real time to non-invasively monitor the health of cell cultures. We utilized these naturally occurring VOCs in an adapted culture method to detect differences in culturing Chinese hamster ovary (CHO) cells with and without Staphylococcus epidermidis and Aspergillus fumigatus contaminations. The VOC emissions from the cell cultures were extracted and measured from the culture flask headspace using polydimethylsiloxane (PDMS)-coated Twisters, which were subjected to thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis.

View Article and Find Full Text PDF

Respiratory Physiological Reactions During Expiratory Muscle Training in Patients with Stable Severe Chronic Obstructive Pulmonary Disease (COPD).

Physiol Behav

December 2024

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. Electronic address:

Object: This study aimed to investigate the physiological responses of patients with severe Chronic Obstructive Pulmonary Disease (COPD) during incremental expiratory resistive loading (ERL).

Method: Nine stable subjects with very severe COPD and hypercapnia were recruited. Baseline data were collected through spontaneous breathing for 10 minutes without resistive load.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!