For the first time in nuclear magnetic resonance (NMR) magnet development, a magnet configuration comprising an insert wound with high-temperature superconductor (HTS) and a background-field magnet wound with low-temperature superconductor (LTS) has been proven viable for NMR magnets. This new LTS/HTS magnet configuration opens the way for development of 1 GHz and above NMR magnets. Specifically, a 700 MHz LTS/HTS NMR magnet (LH700), consisting of a 600 MHz LTS magnet (L600) and a 100 MHz HTS insert (H100), has been designed, built, and successfully tested, and its magnetic field characteristics were measured and analyzed. A field homogeneity of 172 ppm in a cylindrical mapping volume of 17 mm diameter by 30 mm long was measured at 692 MHz and corresponding 1H NMR signal with 1.9 kHz half-width was captured. Two techniques, room-temperature and ferromagnetic shimming, were analytically examined to investigate if they would be effective for further improving spatial field homogeneity of the LH700.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855440 | PMC |
http://dx.doi.org/10.1063/1.2838587 | DOI Listing |
PLoS One
December 2024
College of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, China.
The reliable long-distance transmission of electromagnetic wave signals within goaf is fundamental for the implementation of wireless monitoring and early warning systems for goaf-related disasters. This paper establishes an experimental platform for electromagnetic wave signal transmission within goaf and develops a propagation model for electromagnetic waves in the porous media of goaf. The transmission characteristics of electromagnetic waves at various frequencies within the porous media environment of goaf are investigated through experimental and numerical simulation approaches.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.
View Article and Find Full Text PDFUltrasound Med Biol
February 2025
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA. Electronic address:
Nano Lett
December 2024
National Laboratory of Solid State Microstructures & Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China.
We demonstrate a GHz U-band fiber laser harnessing soliton self-frequency shift (SSFS). The seed source is a passively harmonic mode-locked (HML) fiber laser based on carbon nanotubes (CNTs) polymer film. By adjusting the pump power and polarization controller (PC) appropriately, the repetition rate can be tuned up to 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!