Application of cryotarget to laser ion source.

Rev Sci Instrum

Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan.

Published: February 2008

We examined laser-produced argon plasma as part of a future laser ion source. Rare gases, which are in gas state at room temperature, need to be cooled to solid targets for laser irradiation. We generated solid Ar targets in a similar way used for neon. By irradiating the solid Ar with a neodymium doped yttrium aluminum garnet laser, we could generate Ar ions with a charge stage up to 8+ with a good stability. The feature of generated Ar plasma using this method is similar to the Ne case. The ion current density reached about 1.6 mA/cm(2) at 2.3 m from the target. This method would be applicable for a laser ion source.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2823896DOI Listing

Publication Analysis

Top Keywords

laser ion
12
ion source
12
solid targets
8
laser
5
application cryotarget
4
cryotarget laser
4
ion
4
source examined
4
examined laser-produced
4
laser-produced argon
4

Similar Publications

Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus.

View Article and Find Full Text PDF

Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.

View Article and Find Full Text PDF

Atomically precise nanoclusters, distinguished by their unique nuclearity- and structure-dependent properties, hold great promise for applications of energy conversion and electronic transport. However, the relationship between ligands and their properties remains a mystery yet to be unrevealed. Here, the influence of ligands on the electronic structures, optical properties, excited-state dynamics, and transport behavior of ReS dimer clusters with different ligands is explored using density functional theory combined with time-domain nonadiabatic molecular dynamic simulations.

View Article and Find Full Text PDF

Moisture-Electric Generators Working in Subzero Environments Based on Laser-Engraved Hygroscopic Hydrogel Arrays.

ACS Nano

January 2025

State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China.

Moisture-electric generators (MEGs) generate power by adsorbing water from the air. However, their performance at low temperatures is hindered due to icing. In the present work, MEG arrays are developed by laser engraving techniques and a modulated low-temperature hydrogel as the absorbent material.

View Article and Find Full Text PDF

Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!