We describe fully quantum, time-independent scattering calculations of the F+H2-->HF+H reaction, concentrating on the HF product rotational distributions in v'=3. The calculations involved two new sets of ab initio potential energy surfaces, based on large basis set, multireference configuration-interaction calculations, which are further scaled to reproduce the experimental exoergicity of the reaction. In addition, the spin-orbit, Coriolis, and electrostatic couplings between the three quasidiabatic F+H2 electronic states are included. The calculated integral cross sections are compared with the results of molecular beam experiments. At low collision energies, a significant fraction of the reaction is due to Born-Oppenheimer forbidden, but energetically allowed reaction of F in its excited (2P 1/2) spin-orbit state. As the collision energy increases, the Born-Oppenheimer allowed reaction of F in its ground (2P 3/2) spin-orbit state rapidly dominates. Overall, the calculations agree reasonably well with the experiment, although there remains some disagreement with respect to the degree of rotational excitation of the HF(v'=3) products as well as with the energy dependence of the reactive cross sections at the lowest collision energies.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2831412DOI Listing

Publication Analysis

Top Keywords

spin-orbit state
12
cross sections
8
collision energies
8
allowed reaction
8
reaction
6
evidence excited
4
spin-orbit
4
excited spin-orbit
4
state reaction
4
reaction dynamics
4

Similar Publications

Zintl compounds have garnered research interest due to their diverse technological applications. Utilizing first-principles calculations, we performed a systematic study of ABX (A = Li, Na, K, Rb, or Cs; B = Si, Ge, Sn, or Pb; and X = P, As, Sb, or Bi) Zintl materials with the 6 KSnSb-type structure. Notably, six ABX Zintl compounds (RbSiBi, CsSiBi, LiGeBi, KGeBi, RbGeBi, and CsGeBi) were found to have topologically nontrivial phases, as demonstrated by the invariant computed using the hybrid functional HSE06.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!