The lined sea anemone Edwardsiella lineata has evolved a derived parasitic life history that includes a novel body plan adapted for life inside its ctenophore hosts. Reputedly its sole host is the sea walnut, Mnemiopsis leidyi, a voracious planktivore and a seasonally abundant member of many pelagic ecosystems. However, we have observed substantially higher E. lineata prevalence in a second ctenophore species, the ctenophore predator Beroë ovata. The interplay among these 3 species has important conservation consequences as M. leidyi introductions are thought to be responsible for the severe depletion of numerous commercial fisheries in the Mediterranean basin, and both E. lineata and B. ovata have been proposed as biological controls for invasive M. leidyi. Over a 3-yr period (2004-2006), we collected 8,253 ctenophores from Woods Hole, Massachusetts, including M. leidyi, B. ovata, and a third ctenophore, Pleurobrachia pileus, and we recorded E. lineata infection frequencies, parasite load, and parasite location. We also conducted laboratory experiments to determine the likely mechanisms for parasite introduction and the effect of each host on parasite development. We observed peak E. lineata infection frequencies of 0% in P. pileus, 59% in M. leidyi, and 100% in B. ovata, suggesting that B. ovata could be an important natural host for E. lineata. However, in laboratory experiments, E. lineata larvae proved far more successful at infecting M. leidyi than B. ovata, and E. lineata parasites excised from M. leidyi exhibited greater developmental competence than parasites excised from B. ovata. Although we show that E. lineata is efficiently transferred from M. leidyi to B. ovata when the latter preys upon the former, we conclude that E. lineata larvae are not well adapted for parasitizing the latter species and that the E. lineata parasite is not well adapted for feeding in B. ovata; these developmental and ecological factors underlie the host specificity of this recently evolved parasite.

Download full-text PDF

Source
http://dx.doi.org/10.1645/GE-1250.1DOI Listing

Publication Analysis

Top Keywords

leidyi ovata
12
lineata
11
ovata
9
sea anemone
8
leidyi
8
lineata infection
8
infection frequencies
8
laboratory experiments
8
lineata larvae
8
ovata lineata
8

Similar Publications

Light detection underlies a variety of animal behaviors, including those related to spatial orientation, feeding, avoidance of predators, and reproduction. Ctenophores are likely the oldest animal group in which light sensitivity based on opsins evolved, so they may still have the ancestral molecular mechanisms for photoreception. However, knowledge about ctenophore photosensitivity, associated morphological structures, molecular mechanisms involved, and behavioral reactions is limited and fragmented.

View Article and Find Full Text PDF

Ctenophores or comb jellies are representatives of an enigmatic lineage of early branching metazoans with complex tissue and organ organization. Their biology and even microanatomy are not well known for most of these fragile pelagic and deep-water species. Here, we present immunohistochemical protocols successfully tested on more than a dozen ctenophores.

View Article and Find Full Text PDF

The seas of Ponto-Caspian basin (Black, Azov and Caspian) are exposed to species invasions, including harmful ctenophore Mnemiopsis leidyi A. Agassiz, 1865 and its predator Beroe ovata Bruguière, 1789. Current environmental conditions of invasive ctenophores M.

View Article and Find Full Text PDF

Bioluminescence, which is a manifestation of the vital activity of an organism in the form of electromagnetic radiation in the visible area of the spectrum, is a highly important ecological and optical factor of the marine environment. Until recently, it was believed that microplankton - bacteria and dinoflagellates - exceptionally contribute to the formation of the bioluminescence field in the Black Sea, as well as in other regions of the World Ocean. However, the ctenophores  A.

View Article and Find Full Text PDF

The Caspian Sea is a large inland brackish basin, vulnerable to invaders due to its long isolation and considerable endemism among its native biota. A brief description of Caspian biota evolution until its modern state is given. The pathways and vectors of invasion and the ways of establishment of non-native species since the early 20th century are summarized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!