Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Brugia pahangi infection of dogs is a well characterized model of human lymphatic filariasis in which sera consistently show IgG or IgE reactivity to a 35-kDa antigen. Using dog lymph node B cells, we previously established a heterohybridoma cell line producing canine monoclonal IgE (cmAb 2.39) that activates and degranulates canine mast cells, and specifically recognizes a 35-kDa B. pahangi antigen. By affinity purification and sequencing of the native protein from B. pahangi adults, a 19-amino acid sequence was obtained; the derived nucleotide sequence showed homology to a Brugia malayi and 2 related Onchocerca volvulus expressed sequence tag (EST) clones from the Filarial Genome Project database. Consensus primers amplified a 244-bp product from adult and infective larval stage cDNA libraries of B. malayi, O. volvulus, and Wuchereria bancrofti, but not from those of nonfilarial nematodes. The B. malayi EST clone only showed nucleotide sequence homology to O. volvulus EST sequences. A 684-bp region from the open reading frame was expressed as a glutathione S-transferase fusion protein designated BmAl-1. CmAb 2.39, as well as serum IgE from dogs infected with B. pahangi and canine filarial heartworm, Dirofilaria immitis, recognized BmAl-1 on enzyme-linked immunosorbent assay and Western blots. BmAl-1 showed high binding affinity for a fatty acid; however, a search for sequence homology with known fatty acid binding proteins indicated that BmAl-1 is a unique fatty acid binding protein. This 35-kDa protein seems to be highly conserved in different stages and species of filarids, and it represents a previously unknown allergen that is possibly involved in the pathogenesis of filarial disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1645/GE-1217.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!