Signal transduction events often involve the assembly of protein complexes dependent on modular interactions. The inappropriate assembly of modular components plays a role in oncogenic transformation and can be exploited for therapeutic purposes. Selected peptides embedded in the context of a scaffold protein can serve as competitive inhibitors of intracellular protein functions in cancer cells. Therapeutic application depends on binding specificities and affinities, as well as on the production and purification characteristics of the peptide aptamers and their delivery into cells. We carried out experiments to improve the properties of the scaffold. We found that the commonly used bacterial thioredoxin scaffold is suboptimal for therapeutic purposes because it aggregates during purification and is most likely immunogenic in humans. We compared the properties of peptide aptamers embedded in three alternative scaffold structures: a coiled-coil stem-loop structure, a dimerization domain, and human thioredoxin (hTrx). We found that only the hTrx molecule can be efficiently produced in bacteria and purified with high yield. We removed five internal cysteines of hTrx to circumvent aggregation during purification, which is a prerequisite for efficient transduction. Insertion of our previously characterized peptide aptamers [e.g., specifically binding signal transducer and activator of transcription 3 (Stat3)] into the modified hTrx scaffold retained their target binding properties. Addition of a protein transduction domain, consisting of nine arginines, results in a fusion protein, which is taken up by cultured cells. We show that treatment of glioblastoma cells, expressing constitutively activated Stat3, with the purified peptide aptamers strongly inhibits Stat3 signaling, causing cell growth arrest and inducing apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1541-7786.MCR-07-0245 | DOI Listing |
Anal Chem
December 2024
School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands.
View Article and Find Full Text PDFAnal Chem
December 2024
School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
The recognition of small molecules plays a crucial role in disease diagnosis, environmental assessment, and food safety. Currently, their recognition elements predominantly rely on antibodies and aptamers while suffering from a limitation of the complex screening process due to the low immunogenicity of small molecules. Herein, we present a top-down computational design strategy for molecule recognition peptides (MRPs) for enzyme-peptide self-assembly and chemiluminescence biosensing.
View Article and Find Full Text PDFBioorg Chem
December 2024
Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China. Electronic address:
β-Amyloid (Aβ) peptides are believed as the diagnostic biomarkers and therapeutic targets of Alzheimer's disease (AD). Their complexes with copper ions can catalyze the generation of reactive oxygen species (ROS) to further promote neuronal death. Herein, we suggested that porphyrin-substituted phenylalanine-phenylalanine nanoparticles (TPP-FF NPs) could inhibit the aggregation of Aβ monomers, disassemble the fibrillar Aβ aggregates under light illumination, and depressing the Cu-induced generation of ROS.
View Article and Find Full Text PDFClin Chim Acta
December 2024
Gilgamesh Ahliya University, Baghdad, Iraq. Electronic address:
Early detection and management of cardiovascular diseases (CVDs) are crucial for patient survival and long-term health. CVD biomarkers such as cardiac Troponin-I (cTnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), creatine kinase MB (CK-MB), Galectin-3 (Gal-3), etc are released into the circulation following heart muscle injury, ie, acute myocardial infarction (AMI). Biosensor technology including the use of nanoparticles can be designed to target specific biomarkers associated with CVD, enabling early detection and more rapid intervention to decrease morbidity and mortality.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Department of Neurology, Northwest University First Hospital, Xi'an, 710043, China.
An ultra-sensitive photoelectrochemical (PEC) biosensor for amyloid-beta 40 (Aβ40), a biomarker for Alzheimer's disease (AD), was developed using g-C₃N₄ modified with gold nanoparticles (Au NPs) to form Au-C₃N₄. This was further combined with TiO₂ to create a tightly bonded TiO₂/Au-C₃N₄ heterojunction, leading to a highly responsive photocatalytic process. Furthermore, the incorporation of noble metal Au NPs not only enhances photocurrent generation but also securely immobilizes the aptamer through Au-S bonds, providing additional surface binding sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!