In order to further test whether or not psychostimulant drugs activate CART peptide-containing cells in the nucleus accumbens, we examined the fraction of CART positive cells that co-immunostained for c-Fos after administration of saline or cocaine (10 and 25 mg/kg i.p.). There was about a 45% increase in the fraction of cells that stained for both CART and c-Fos after administration of cocaine, but there was no change in the fraction after administration of saline. Moreover, the increase was not found 24h after injection and is therefore reversible. These results support the notion that psychostimulant drugs activate CART cells in the nucleus accumbens, even under conditions where it is difficult to show a change in CART levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493299PMC
http://dx.doi.org/10.1016/j.npep.2008.01.001DOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
12
fraction cart
8
cart cells
8
psychostimulant drugs
8
drugs activate
8
activate cart
8
cells nucleus
8
c-fos administration
8
administration saline
8
cart
6

Similar Publications

Adolescence is a developmental period marked by significant alterations to brain neurobiology and behavior. Adolescent nicotine use disrupts developmental trajectories and increases vulnerability to maladaptive drug-taking in adulthood. The mesolimbic dopamine (DA) system, including the nucleus accumbens core (NAc), mediates the reinforcing effects of nicotine.

View Article and Find Full Text PDF

Stress plays a significant role in the onset of numerous psychiatric disorders. Depending on individual resilience or stressor's nature, long-term changes to stress in the brain can lead to a wide range of behavioral symptoms, including social withdrawal, feelings of helplessness, and emotional overeating. The brain receptor molecules are key mediators of these processes, translating neuromodulatory signals into neuronal responses or circuit activity changes that ultimately shape behavioral outcomes.

View Article and Find Full Text PDF

Neurotransmitters crosstalk and regulation in the reward circuit of subjects with behavioral addiction.

Front Psychiatry

January 2025

Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.

Behavioral addictive disorders (BADs) have become a significant societal challenge over time. The central feature of BADs is the loss of control over engaging in and continuing behaviors, even when facing negative consequences. The neurobiological underpinnings of BADs primarily involve impairments in the reward circuitry, encompassing the ventral tegmental area, nucleus accumbens in the ventral striatum, and prefrontal cortex.

View Article and Find Full Text PDF

Recreational use of nitrous oxide (NO) has risen dramatically over the past decades. This study aimed to examine its rewarding effect and the underlying mechanisms. The exposure of mice to a subanesthetic concentration (20%) of NO for 30 min for 4 consecutive days paired with NO in the morning and paired with the air in the afternoon produced apparent rewarding behavior in the conditioned place preference (CPP) paradigm.

View Article and Find Full Text PDF

Background: While Alcohol Use Disorder (AUD) is frequently associated with impulsivity, its structural brain substrates are still poorly defined. The triadic model of addiction postulates that impulsive behavior is regulated by an amygdalo-striatal impulsive subcomponent, a prefrontal and cerebellar reflective subcomponent, and an insular regulatory subcomponent. The objective of this study was thus to examine the relationships between self-evaluated impulsivity and structural brain abnormalities in patients with severe AUD (sAUD) using the triadic model as a theoretical framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!