Connective tissue growth factor (CTGF/CCN2) is a cysteine rich, extracellular matrix protein that acts as an anabolic growth factor to regulate osteoblast differentiation and function. In osteoblasts, CTGF is induced by TGF-beta1 where it acts as a downstream mediator of TGF-beta1 induced matrix production. The molecular mechanisms that control CTGF induction by TGF-beta1 in osteoblasts are not known. To assess the role of individual Smads in mediating the induction of CTGF by TGF-beta1, we used specific Smad siRNAs to block Smad expression. These studies demonstrated that Smads 3 and 4, but not Smad 2, are required for TGF-beta1 induced CTGF promoter activity and expression in osteoblasts. Since the activation of MAPKs (Erk, Jnk and p38) by TGF-beta1 is cell type specific, we were interested in determining the role of individual MAPKs in TGF-beta1 induction of CTGF promoter activity and expression. Using dominant negative (DN) mutants for Erk, Jnk and p38, we demonstrated that the expression of DN-Erk caused a significant inhibition of TGF-beta1 induced CTGF promoter activity. In contrast, the expression of DN-p38 or DN-Jnk failed to inhibit activation of CTGF promoter activity. To confirm the vital role of Erk, we used the Erk inhibitor (PD98059) to block its activation, demonstrating that it prevented TGF-beta1 activation of the CTGF promoter and up-regulation of CTGF expression in osteoblasts. Since Src can also act as a downstream signaling effector for TGF-beta in some cell types, we determined its role in TGF-beta1 induction of CTGF in osteoblasts. Treatment of osteoblasts with a Src family kinase inhibitor, PP2, or the expression of two independent kinase-dead Src mutant constructs caused significant inhibition of TGF-beta1 induced CTGF promoter activity and expression. Additionally, blocking Src activation prevented Erk activation by TGF-beta1 demonstrating a role for Src as an upstream mediator of Erk in regulating CTGF expression in osteoblasts. To investigate the involvement of the TGF-beta1 response element (TRE) and the SMAD binding element (SBE) in CTGF induction, we cloned the rat CTGF proximal promoter (-787 to +1) containing the TRE and SBE motifs into a pGL3-Luciferase reporter construct. Using a combination of CTGF promoter deletion constructs and site-directed mutants, we demonstrated the unique requirement of both the TRE and SBE for CTGF induction by TGF-beta1 in osteoblasts. Electro-mobility shift assays using specific probes containing the TRE, SBE or both showed TGF-beta1 inducible complexes that can be ablated by mutation of the respective motif, confirming their requirement for TGF-beta1 induced CTGF promoter activity. In conclusion, these studies demonstrate that CTGF induction by TGF-beta1 in osteoblasts involves Smads 3 and 4, the Erk and Src signaling pathways, and requires both the TRE and SBE motifs in the CTGF proximal promoter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430079PMC
http://dx.doi.org/10.1016/j.bone.2008.01.006DOI Listing

Publication Analysis

Top Keywords

ctgf promoter
32
promoter activity
24
ctgf
20
tgf-beta1 induced
20
tgf-beta1
18
induction ctgf
16
ctgf induction
16
induced ctgf
16
tre sbe
16
ctgf expression
12

Similar Publications

Background: Extracellular matrix protein 1 (ECM1) can inhibit TGFβ activation, but its antifibrotic action remains largely unknown. This study aims to investigate ECM1 function and its physical interaction with the profibrotic connective tissue growth factor (CTGF) in fibrosis and ductular reaction (DR).

Methods: Ecm1 knockouts or animals that ectopically expressed this gene were subjected to induction of liver fibrosis and DR by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or α-naphthyl-isothiocyanate (ANIT).

View Article and Find Full Text PDF

Bleomycin-Induced Pulmonary Fibrosis in Transgenic Mice Carrying the Human rs35705950 Variant.

Cells

September 2024

Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan.

Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal lung disease characterized by tissue scarring and declining lung function. The promoter polymorphism rs35705950, a significant genetic predisposition for IPF, paradoxically associates with better survival and slower disease progression than other IPF genotypes. This study investigates the potential paradoxical protective effects of this variant in lung fibrosis.

View Article and Find Full Text PDF

CTGF regulated by ATF6 inhibits vascular endothelial inflammation and reduces hepatic ischemia-reperfusion injury.

Biochim Biophys Acta Mol Basis Dis

December 2024

Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. Electronic address:

Article Synopsis
  • Vascular endothelial inflammation plays a key role in hepatic ischemia-reperfusion injury (IRI), and connective tissue growth factor (CTGF) secreted by endothelial cells is protective against liver damage but its regulatory mechanisms are unclear.
  • The study investigates how ATF6, activated by endoplasmic reticulum stress, regulates CTGF to mitigate inflammation and liver damage during IRI, finding that ATF6 enhances CTGF expression while inhibiting inflammatory responses.
  • Clinical evidence shows a rise in CTGF post-IRI, which inversely correlates with inflammatory cytokines, suggesting that targeting the ATF6-CTGF pathway could be a new strategy for diagnosing and treating liver IRI.
View Article and Find Full Text PDF

Hypertrophic scarring (HS) is a pathological condition characterized by excessive fibrosis and inflammation, resulting in excessive extracellular matrix formation in the skin. MIR155HG, a long non-coding RNA, is abnormally upregulated in fibrotic tissues; however, its underlying mechanism is poorly understood. Using single-cell sequencing data, we analyzed connective tissue growth factor (CTGF) expression in various cell types in HS and normal skin tissues and MIR155HG expression in clinical samples.

View Article and Find Full Text PDF

This study aimed to explore effects of microRNA (miR)-143 on the proliferation, apoptosis, and cytokine secretion in astrocytes after spinal cord injury (SCI). After gain- and loss-of-function assays and transforming growth factor (TGF)-β stimulation in astrocytes, the cell viability, proliferation, and apoptosis were examined. The expression of miR-143, SIRT2, and PLAUR and levels of astrocyte-related glial fibrillary acidic protein (GFAP), Vimentin, chondroitin sulfate proteoglycan (CSPG), and connective tissue growth factor (CTGF) were also measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!